
 

 

UNIVERSITY OF PATRAS 
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT 

ELECTRONICS AND COMPUTERS SECTOR 
HUMAN­COMPUTER INTERACTION GROUP 

A NETWORKED USAGE DATA LOGGER

FOR SYMBIAN PHONES

DIPLOMA THESIS OF

PATRICIA GÓMEZ TEJEDOR

STUDENT OF THE UNIVERSITY OF VALLADOLID

SUPERVISORS: PROF. N. AVOURIS

DIPLOMA THESIS NUMBER: /2008

JUNE 2008

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 2 

First of all, thanks to Mr. A. Stoica and Mr. C. Sintoris because they have made possible the 
development  of  this  diploma  thesis  helping  in  every  moment  that  I  needed  it  and 
repeating each day the famous “Trabaja, trabaja!!”. Thanks also to the Human­Computer 
Interaction Group that has welcome us in their working group. 

 Specially, I have to be grateful for the support of “my Spanish Team”, Manu, Héctor, Jesús, 
Olga, Berni, Blanca and Raúl, that encourage me in the bad moments and has been there 
for everything I needed. I have to remember everybody from the Small Estia, the ones that 
are  still  there  and  the  ones  that  already  left,  for  contribute  to  reach  this  goal.  And,  of 
course, thanks to the nice Greek people, who taught us a different way of living. 

 Besides, I don’t want to forget the grateful to Mr. Erasmus for giving us the opportunity 
of living this experience and spent the BEST year of our life. Finally thanks to my family 
and friends for encouraging me from Valladolid and all Spain. 

 

 

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 3 

CERTIFICATION
 

 

 

It is certified that the Diploma Thesis with the title: 

 

 

 

 

A Networked Usage Data Logger for Symbian Phones

Of the student of the University of Valladolid, Spain.

GÓMEZ TEJEDOR, PATRICIA
 (Επώνυµο) (Όνοµα) (Πατρώνυµο) (ΑΜ)

 

 

Was presented in public at the Department of Electrical and Computer Engineering of the
University of Patras, Greece on June 26.

The Supervisor   The Head of the Electronics and Computers Division 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 4 

Professor: N. AVOURIS      Student: PATRICIA GÓMEZ TEJEDOR 

 

 

 

 

Title:

A Networked Usage Data Logger for Symbian Phones
 

 

 

Abstract  
 

This diploma thesis includes the design and the implementation of an application that
allows to a Symbian OS Mobile Phone, to collect data and to store it, in the own device, or
sending it through Internet to a server, in order to be used for an analyser to do Usability
Evaluation. Before the implementation of this Data Collector tool, the diploma thesis
contains a study about the existing technologies related to smarthphones and an overview of
the uses where this tool created can contribute to, and an introduction about how data
collection can influence in the acceptation of a new application from users, doing previously
usability evaluation focusing in the interaction between groups of users and this new tool.

For this reason, data gathering and usability evaluation are introduced, emphasizing
their importance in the process of developing a new tool in the field of Human-Computer
Interaction, and reviewing the techniques for collecting data and evaluating mobile
applications. Besides, in order to evaluate the tool created, it has been tested by a developer,
including it in a real application, to log its data and analyse its interaction; and then, giving
back its impressions and feedback about the data collector tool.

The resulted application will be included in a larger project of the Human-Computer
Interaction group of the University of Patras, concerning about collecting data to do
usability evaluation in public places such as museums. This diploma thesis, “A Networked
Usage Data Logger for Symbian Phones”, includes the design, implementation and
evaluation of this application.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 5 

 

INDEX
 

1  INTRODUCTION ..9 
1.1  GENERAL IDEA OF THE APPLICATION...9 
1.2  GOAL OF THE PROJECT ...11 
1.3  CONTENT OF THE THESIS ...11 
1.3.1  Background..11 
1.3.2  Technologies..11 
1.3.3  Design ...12 
1.3.4  Implementation..12 
1.3.5  Evaluation ..12 
1.3.6  Conclusion...13 

2  BACKGROUND... 14 
2.1  INTRODUCTION TO HUMAN‐COMPUTER INTERACTION ..14 
2.1.1  What is Human­Computer Interaction?..14 
2.1.2  Content of Human­ Computer Interaction ...15 

2.2  DATA COLLECTION..16 
2.2.1  What is Data Collection? ..16 
2.2.2  Pros and Cons of Data Collection..17 

2.3  USABILITY EVALUATION OF MOBILE APPLICATIONS...18 
2.3.1  What is Usability Evaluation?..18 
2.3.2  Why is useful to do usability evaluation?..19 
2.3.3  Why Usability Data is Difficult to Analyze and Communicate?...20 
2.3.4  Techniques for Analyzing and Communicating Usability Data ..21 

3  TECHNOLOGIES .. 26 
3.1  SMARTPHONES ..26 
3.1.1  What is a smartphone? ...26 
3.1.2  Software in smartphones ...27 
3.1.3  Operating systems in smartphones..27 

3.2  SYMBIAN OS FOR MOBILE DEVICES..34 
3.2.1  What is Symbian? ..34 
3.2.2  Symbian OS Phones...34 
3.2.3  The device: Nokia N70...36 

3.3  THE DEVELOPING TOOL: CARBIDE.C++..37 
3.3.1  What is Carbide.C++?...37 
3.3.2  Pros and Cons of the development in Carbide.c++ ..37 
3.3.3  Software Development Kit (SDK) ...38 
3.3.4  The emulator ...40 

4  DESIGN .. 42 
4.1  OVERVIEW OF THE WHOLE SYSTEM...42 
4.2  DATA COLLECTOR TOOL FOR SYMBIAN PHONES...44 
4.2.1  What is a  Dynamic Link Library?..44 
4.2.2  Class diagram of the tool ...45 
4.2.3  Application Programming Interface...47 

5  IMPLEMENTATION.. 65 
5.1  DATA COLLECTOR TOOL FOR SYMBIAN PHONES...65 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 6 

5.1.1  Prepare the data to be log...65 
5.1.2  Log events in the own device ..66 
5.1.3  Log events in the server ..69 
5.1.4  Measure the time spent logging events ...74 

6  EVALUATION... 75 
6.1  INTRODUCTION ..75 
6.2  EVALUATION MADE BY A DEVELOPER..75 
6.2.1  Method ...75 
6.2.2  Data Analysis...77 
6.2.3  Video recorded by the developer ..80 
6.2.4  Feedback from the developer ...84 

6.3  PERFORMANCE EVALUATION..86 
6.3.1  Method ...86 
6.3.2  Data Analysis and presentation of results..86 

7  CONCLUSION ... 89 
8  APPENDIXES.. 91 
8.1  APPENDIX A:  EVALUATION WITH SLOCCOUNT BASED IN COCOMO MODEL.....................................91 

REFERENCES... 93 
 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 7 

 

INDEX OF FIGURES
 

FIGURE 1. GRAPHICAL OVERVIEW OF THE PROJECT WHERE THE DATA COLLECTOR TOOL IS INVOLVED....................................9 
FIGURE 2. LISTENING  AND LOOKING FOR INFORMATION IN A MUSEUM ... 10 
FIGURE 3. HUMAN‐COMPUTER INTERACTION .. 16 
FIGURE 4. TAKING NOTES WRITING ON A PAPER... 17 
FIGURE 5. TAKING NOTES ON THE DEVICE ... 17 
FIGURE 6. GOALS IN EVALUATION ... 19 
FIGURE 7. AFFINITY DIAGRAMMING ... 22 
FIGURE 8. NUMBER OF EVALUATORS VS PROPORTION OF USABILITY PROBLEMS FOUND... 24 
FIGURE 9. NUMBER OF EVALUATORS VS RATIO OF BENEFITS TO COSTS ... 25 
FIGURE 10. A NOKIA N92 WITH SYMBIAN OS .. 28 
FIGURE 11. THE T‐MOBILE DASH WITH WINDOWS MOBILE .. 28 
FIGURE 12. THE IPHONE BY APPLE .. 29 
FIGURE 13. A BLACKBERRY 8700C... 30 
FIGURE 14. THE LINUX SMARTPHONE.. 30 
FIGURE 15. THE TREO 680 SMARTPHONE WITH GARNET OS .. 31 
FIGURE 16. SMARTPHONE SHARES AROUND THE WORLD IN 2007... 33 
FIGURE 17. THE ERICSSON R380... 34 
FIGURE 18. THE NOKIA 9210 COMMUNICATOR.. 34 
FIGURE 19. NOKIA N70 ... 36 
FIGURE 20. DEVELOPMENT ENVIRONMENT OF CARBIDE.C++ ... 38 
FIGURE 21. S60 SOFTWARE .. 39 
FIGURE 22. S60 RELEASES... 40 
FIGURE 23. VIEW OF THE EMULATOR .. 41 
FIGURE 24. REPRESENTATION OF THE WHOLE SYSTEM APPLICATION.. 42 
FIGURE 25. CLASS DIAGRAM OF THE TOOL.. 46 
FIGURE 26. XML FILE CREATED CORRECTLY .. 68 
FIGURE 27. XML FILE WRONG CREATED ... 69 
FIGURE 28.  VIEW OF THE REQUESTS RECEIVED BY THE SERVER... 73 
FIGURE 29. VIEW OF THE DATABASE OF PROPERTIES IN THE SERVER .. 74 
FIGURE 30. SCREENSHOT WITH THE APPLICATION IMPORTED TO THE PROGRAM .. 80 
FIGURE 31. SCREENSHOT OF THE LIBRARY REFERRED IN THE HEADER FILE OF THE APPLICATION... 81 
FIGURE 32. SCREENSHOT OF ADDING THE LIBRARY TO THE MMP FILE ... 81 
FIGURE 33. SCREENSHOT OF THE APPLICATION ONCE THE FUNCTIONS ARE INCLUDED... 82 
FIGURE 34. SCREENSHOT OF DEFINING FUNCTIONS IN HEADER FILE .. 82 
FIGURE 35. SCREENSHOT OF ADDING PROPERTIES OF THE EVENT TO THE ARRAY.. 83 
FIGURE 36. BUILDING THE APPLICATION... 83 
FIGURE 37. RUNNING THE APPLICATION ... 83 
FIGURE 38. MESSAGE OF EVENT LOGGED SUCCESFULLY.. 84 
FIGURE 39. TIME SPENT LOGGING EVENTS LOCALLY ... 87 
FIGURE 40. TIME SPENT LOGGING EVENTS IN THE SERVER... 88 
 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 8 

 

INDEX OF TABLES
 

TABLE 1. ROAD MAP FOR SMARTPHONES OPERATING SYSTEMS IN MAY 2008.. 32 
TABLE 2. CONTENT OF THE DLL LIBRARY1 ... 47 
TABLE 3. CLASSES DEVELOPED INCLUDED IN THE DLL LIBRARY1 ... 48 
TABLE 4. CLASSES FROM THE PLATFORM USED IN THE DLL LIBRARY1... 48 
TABLE 5. CONSTRUCTORS OF THE CLASS CLIBRARY1 ... 49 
TABLE 6. METHODS OF THE CLASS CLIBRARY1.. 51 
TABLE 7. GLOBAL VARIABLES IN CLASS CLIBRARY1.. 53 
TABLE 8. METHODS OF THE CLASS PROPERTY.. 54 
TABLE 9. GLOBAL VARIABLES OF THE CLASS PROPERTY ... 54 
TABLE 10. CLASSES IN THE APPLICATION.. 56 
TABLE 11. CONSTRUCTORS AND DESTRUCTOR OF THE CLASS CAPPLICATION1ENGINE... 57 
TABLE 12. METHODS OF THE CLASS CAPPLICATION1ENGINE... 58 
TABLE 13. GLOBAL VARIABLES OF THE CLASS CAPPLICATION1ENGINE.. 59 
TABLE 14. CONSTRUCTOR OF THE APPLICATION CLASS ... 59 
TABLE 15. METHODS OF THE APPLICATION CLASS .. 60 
TABLE 16. CONSTRUCTORS AND DESTRUCTOR OF THE DOCUMENT CLASS.. 61 
TABLE 17. METHODS IN THE DOCUMENT CLASS .. 61 
TABLE 18. CONSTRUCTOR AND DESTRUCTOR OF THE APPLICATION UI CLASS .. 62 
TABLE 19. METHODS OF THE APPLICATION UI CLASS .. 62 
TABLE 20. VARIABLES OF THE APPLICATION UI CLASS .. 63 
TABLE 21. CONSTRUCTOR AND DESTRUCTOR OF THE CONTAINER CLASS ... 63 
TABLE 22. METHODS OF THE CONTAINER CLASS... 64 
 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 9 

1 INTRODUCTION
 

1.1 GENERAL IDEA OF THE APPLICATION

Firstly, it is necessary to create to the reader an overview of the project where this
application is involved, because it is only a small part of a larger project developed by the
Human-Computer Interaction Group of the University of Patras. The goal of this group is to
analyse the behaviour of people interacting with mobile devices, in order to test the usability
of applications.

Nowadays, mobiles devices are widespread between people around the world, every
common person has become in a potential user, and mobile phones are now a basic part of
the usual life. In this situation, it is really important to design and develop new applications
easily understanding by everyone, even if they are not used to the management of this
devices; this is the reason why new programs are focused to get the acceptance of users and
become in a well-known tool, and to raise this goal developers are focused on testing the
usability of their applications in the first steps of the design.

 
Figure 1. Graphical overview of the project where the Data Collector tool is involved

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 10 

The project where the data logger is involved, it is composed by three parts pretty
different between them, but all together accomplish a common goal (Figure 1). In one side,
there are the mobile devices that gather data from the field and send this information to the
server, these devices are mobile phones and PDAs, which work in different operating
systems, and therefore, has different tools with a similar schema of operation but
programmed in different languages. The information collected by this devices is sent to a
server, that represents the second part of this system; it main goal is to manage the data
received and store it in a database. After that, the third part of the project, the analyser, can
start doing its job that consist on collect the data from the database and evaluate its
information thanks to a usability tool.

The scenario of this project could be a museum, another collaborative institution, one
laboratory of usability testing, one laboratory of a developer, etc. Taking the example of the
museum, all the monuments have an identifier and visitors can play with mobile phones or
PDAs, in order to know more information about the history of the pieces, even children can
play some games during the tour, and at the end, the analyzer can check what they have been
doing. It means, in what moment and with who they were playing, in which sculpture people
spend more time, if the games or the summarize explaining the sculpture were attractive for
them, and with all this information the applications can be improve increasing the attention
and the quality of the museum. [37]

 
Figure 2. Listening  and looking for information in a museum

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 11 

1.2 GOAL OF THE PROJECT
 

The goal of this part of the project is to design and implement an application for
Symbian mobile phones to collect data and send it to a server for storage or management, for
a future used of an analyser. This tool consists in a library programmed on Symbian
language developed with Carbide.c++ and it will support Symbian OS for the mobile phone
Nokia N70.

The tool created is really useful to developers, usability testers, etcetera, in order to do
Data Gathering. This data collected is applicable to many uses as, for example, with the data
collected it is possible to do Usability Evaluation of the behavior of interactive groups of
people. Therefore, it is very important in the field of Human-Computer Interaction (HCI) to
know how people react to a particular situation and how the application tested can act in
each moment or how it can fix the problems with the changing behavior of people; and also
for testing one application for developers, in order to understand better how their tool works
and how they can solve its fails.

1.3 CONTENT OF THE THESIS
 

1.3.1 Background

Firstly, it will be introduced the concept of Human-Computer Interaction, the field of
work that the department when we are working is focused in. That is the reason why it is
very important for the development of this report to know a basic definition about it.

Secondly, one of the most important topics to start talking about this project is to
understand the meaning of one of its principal implementation: Data Collection. To know
why it is important, why it is used for and why it has been more widespread lately, will be
the goal to be focused in during this chapter.

Besides, the topic of Usability Evaluation will be introduced and explained, because it
is one of the main uses that analyzers, users and developers could give to the data collected,
in order to test applications and evaluate them.

1.3.2 Technologies
 

In this chapter, there is explained what are the technologies used in the development of
this project, such as which are the devices that we are working with, why they were
designed, and what kind of tasks can be done with them. Also, the software and operating
systems that smartphones use, including a brief description and some characteristics of each
one of them.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 12 

Then, we will focus in Symbian OS, the operating system that our device in the project
uses, with an explanation about its most important properties. Besides, there is a brief
comment about the kind of mobiles phones that use this operating system and then, a
description about the phone used in the experimentation, the Nokia N-70.

And finally, the program Carbide.c++ where the tool has been programmed is
introduced and explained its basic characteristics of use.

1.3.3 Design
 

In this section, it is explained the design of the application programmed to gather data
using a mobile phone, from the library to a example application that it is going to use it,
understanding the different functions and their task, to know exactly what it is done in each
moment, and all the possibilities of use.

Moreover, a class diagram is shown to present how the parts of the project are related
between them, and how is the communication between these parts.

 

1.3.4 Implementation
 

This is an explanation about how the tasks that the tool carries out are done, and how it
is the interaction with the server, besides the establishment of a connection and the way to
log events in the own device.

Also, there are presented some examples of the result of the communication between
the server and the device, as how the data arrives to the server, and another practical
experiments.

 

1.3.5 Evaluation
 

In this chapter the usability of the designed tool is evaluated with different techniques
and it can give us a global idea about how worthy is it.

One of these methods is the evaluation done from a developer that with a group of
instructions add this data collector tool to an application already working and give back
feedback about its impression of the usability of the system.

The other technique is interpreting the capability and speed of the tool carrying out
some test with different parameters, and then, obtaining some conclusions from this results.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 13 

1.3.6 Conclusion
 

To sum up, some comments about the environment where the tool has been created, its
importance; besides some impressions about the work done during the development of this
thesis to understand it better and to show what has been achieve at the end of this process, in
order to give to the reader an overview of the conclusion of the project.

Moreover, some ideas about the future work to do with this application and in its
scenario, are proposed.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 14 

2 BACKGROUND
 

2.1 INTRODUCTION TO HUMAN-COMPUTER INTERACTION
 

The concept of Human-Computer Interaction is of vital importance for the
development of this project, because it is involved in a larger project focused on this topic.
So, firstly, it is necessary to have an idea about the meaning of this subject.

2.1.1 What is Human-Computer Interaction?
 

Human–computer interaction (HCI) is the study of interaction between people (the
users) and computers to make easier to work with these machines in the software side
(interfaces) and in the hardware.

The following definition is given by the Association for Computing Machinery [2]:

"Human-computer interaction is a discipline concerned with the design, evaluation and
implementation of interactive computing systems for human use and with the study of major
phenomena surrounding them."

From a computer science point of view, HCI is focused on the interaction between one
or more humans and one or more computational machines. The first idea someone can
imagine is a person working on his personal computer, but the “Human-Computer
Interaction” field includes many situations. Instead of computers, it could be also parts of
computational machines, such as parts of a spacecraft or a microwave. Another situation to
consider, which is described in this report, is a group of humans or an organization working
all together in the same project and using each one a mobile device.

But Human-Computer Interaction is not only focused on the computer science field,
HCI in the large is an interdisciplinary area. It includes several disciplines, each one with
different goals: computer science (application design and engineering of human interfaces),
psychology (the application of theories of cognitive processes and the empirical analysis of
user behavior), sociology and anthropology (interactions between technology, work, and
organization), and industrial design (interactive products).

As HCI studies a human and a machine in communication, it must support knowledge
about these both fields, the machine and the human side. On the machine side, techniques in
computer graphics, operating systems, programming languages and development
environments are relevant. On the human side, communication theory, graphic and industrial
design disciplines, linguistics, social sciences, cognitive psychology and human
performance are relevant. And, of course, engineering and design methods are also relevant.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 15 

 

2.1.2 Content of Human- Computer Interaction
 

The main topic of Human-Computer Interaction can be divided in five interrelated
aspects, according to ACM SIGCHI (Association for Computing Machinery Special Interest
Group on Computer-Human Interaction) [2]:

- The nature of human-computer interaction, that gives an overview about the
different points of view, objectives, history and intellectual root of HCI.

- The use and context of computers, that explains the different applications that users
can give to the machines in the computer world, giving us an idea of the variety of
necessary interfaces; the general social, work and business context; and the
problem to fit and adapt to each other computers, human users and context, all
together considering them as a whole.

- Human characteristics, that includes a basic knowledge about human information-
processing characteristics, how human action is structured, the nature of human
communication including the different aspects of language, and human physical
and physiological requirements, studying their relationship with the workspace and
the environment.

- Computer system and interface architecture, that explains the specialized
components that machines have to interact with humans, like input and output
devices and their characteristics, dialogue techniques for interacting with humans,
basic concepts for computer graphics, and software architecture and standards for
user interfaces.

- The development process, that includes the construction of human interfaces as
designing and engineering process, taking in consideration the rest of the system;
also making tools for implementation and methods of evaluation, as case studies
and classic designs to use it as extended examples of human interface design.

In the Figure 3, some of the interrelations between these elements are represented:

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 16 

 

 

Figure 3. Human­Computer Interaction 

 

2.2 DATA COLLECTION
 

2.2.1 What is Data Collection?
 

Data collection is the process of recording data using a handheld or mobile computer.
Usually, this process takes place while the user is, for example, away from an office, where
the access to a main system or database is limited. In that moment, instead of taking notes
writing on a paper (Figure 4), the user can enter the information that he wants to collect,
directly into the device (Figure 5). This information is saved on the mobile device for later
use, and it can be transferred to a computer, shared with others or added to a database.

 
Figure 4. Taking notes writing on a paper 

Figure 5. Taking notes on the device 

If you imagine this concept of gathering data some years ago, it could seem almost
impossible, even when the mobile devices, as PDAs and handhelds, have been in the market
for several years. But recently their use has been very widespread because the price of these
devices is not very expensive nowadays. So, this technology is not only for big businesses
and companies, currently is affordable for everyone, including students, researchers and
small business owners.

2.2.2 Pros and Cons of Data Collection

To have a general idea about how data collection with a handheld device is useful in
our life, next there is an explained list of advantages of data gathering:

- With data collection time is saved because you can enter data in mobile devices
quickly with a few clicks, and at the same time you are saving the time you would spend if,
after gathering data handwritten in the field, you would need to copy this data to a computer.
Using a mobile device you just need to type it once directly from the scenario when you are
working, and later you can send it easily to a personal computer without writing it again.

- Other important advantage is to reduce clutter in your daily life, because all data is
collected and stored in a small portable device and it not necessary to carry around, keep
together and organize tons of papers, pens and clipboard with the information.

- One of the most important sources in an experiment can be saved with the correct
collection of the data in a mobile device: money. Mistakes and wasted time due to illegible
handwriting and lost papers are reduced, so it is possible to collect data faster and the tester
can be focused on analysis and can make quicker decisions, using less time and, for that
reason, saving money.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 18 

Therefore, not all are advantages using handhelds, there are things that are not
improved with this technique compared to traditional paper-based methods, and so it is
necessary to explain also the disadvantages of it:

 - Even with the correct use of the mobile device during the research, money is saved;
it is needed to count with the expense of the initial cost of devices. However, prices for
smartphones are been reduced each day, so there are not very expensive as when they
appeared in the market, and nowadays are becoming more widespread.

 - Also, it is needed to take in consideration possible problems during use of the
device. It can make you loose your time and data already collected, especially when you are
working on the field. On the other hand, data security measures such as external memory
cards are really useful in these situations and their price is not very expensive nowadays,
besides, devices are continuously tested and their developers try to fix every possible fail.

- And, as any new technology, it is necessary to include the initial learning of users
that could be a handicap during the implementation, because maybe they are not
familiarized with the usage of a handheld device or uncomfortable with the visibility of
displays or bottoms. Successfully, these devices included carefully explained information
and user’s manual for the inexperience users, as well as it could be provided an appropriate
training for them.

 

2.3 USABILITY EVALUATION OF MOBILE APPLICATIONS
 

In mobile applications, usability evaluation is a really important tool nowadays, in
order to discover the problems that users can find while they are working in different fields.
To find out these difficulties is really important when an application is developed, because it
could be improved after the evaluation thanks to the results obtained, and more important,
thanks to this improvement it could better considered in the market between costumers and
it could get more acceptance between final users.

 

2.3.1 What is Usability Evaluation?
 

Usability evaluation is an analysis or study of the usability of a prototype, application
or system. Its main goal is to provide feedback in development in order to follow an iterative
development process to improve the created product. To carry out this, it is needed to follow
some basic steps as recognize problems, understand the causes of these problems and plan
changes to improve it.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 19 

 
Figure 6. Goals in evaluation 

 

2.3.2 Why is useful to do usability evaluation?
 

As it was said before, the usability evaluation is a tool to provide feedback in
development and to improve a product created. In the field of Human-Computer Interaction,
this feedback will be focused on the behaviour of groups of people that interact with this
product developed; looking for its satisfaction, effectiveness and efficiency.

The usability Evaluation has several benefits, below are explained some of the most
important ones in our field of work [14]:

1. Making mobile computer systems aware of their user's contextual setting, designers
can use this information to present only information and functionality relevant in
specific situations. This way, the user interface can be simplified and the demand for
user interaction can be reduced. Consequently, it gets some savings of time for the
user, getting better the feeling that this application cause in this user.

2. Tailoring the interface to its context may also facilitate partial automation of
repetitive and trivial tasks.

3. Also, making the system react to contextual changes may be used to increase
security of data and users.

 

In spite of all of these good reasons to begin to use the usability evaluation, the
context-awareness for mobile information systems has not been yet fully carried out in
practice.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 20 

It is clearly seen that, applying usability evaluation is really useful. However,
applying the methods do usability, it has several troubles or problems due to their difficulty
to analyze and communicate, these problems will be explained in the next section.

2.3.3 Why Usability Data is Difficult to Analyze and Communicate?
 

One of the problems to use and to analyse usability data is the nature of the data:
usability data is often observation-based rather than measurement-based. Often these
behaviour observations are not very meaningful at the beginning and have to be interpreted
by the usability evaluator. The usability evaluator often has to extrapolate the usability
observations based on “hunch” or “gut feelings”. This makes the design recommendations
made by the usability evaluator questionable as "subjective" or "biased".

Another problem referring with this usability is to decide between field or laboratory
study. When testing a user interface of a mobile device application, field testing may not
necessarily be the best place; mostly because it is more time consuming than the lab test, and
usually more expensive, because you have to move all this equipment and people who has to
work with it. Besides, when testing in the field, be prepared that things will not go as
planned: there may be interruptions and unexpected events more than in lab.

Other difficult part of doing this is what to communicate. One way around is to
provide the chain of reasoning that the usability evaluator used to derive the design
recommendations from the raw observational data. This allows the recipient of the data to
understand how the interpretations and design recommendations were arrived at. So the
challenge is to provide meaningful information with enough rationale that lends the
information sufficient credibility.

Seeing more problems of using usability, appear one related with, who receives the
data. Often the users for the usability testing data are not homogeneous: it could be a mix of
design engineers, technical writers, and different levels of management and so on. Some
portions of this audience may want every last detail of the data while others may want only a
high level synopsis. Fitting the content of the communication to the appropriate audience
without having to write several flavours of the report is a challenge.

Another trouble is concerning about how to communicate. Even if the time limitations
associated with collecting data was not an issue, usability practitioners need to understand
that the reporting of data needs to be in formats and use several things in order to get
understandable the information by the development team members. For example, software
engineers work and address problems in terms of modules. However, usability testing can
reveal “systemic” or general issues that cross module boundaries creating communication
challenges with the software engineers.

The right time to spend your usability budget is one of the worst problems related with
usability evaluation, because it involves the budget, the money to spend in the project.

Other typical trouble is timeliness. Late usability results and change
recommendations are often received as “bad news”. However, the concern that bugs may be
introduced by making changes late in the product lifecycle must be considered. You have to

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 21 

be carefully with when you do the usability recommendations, because it is better to do in at
the beginning in order to can change all the defects expending, the less, as time as money,
possible.

Besides, to all of these problems, who collects the data is a really difficult trouble
too. As usability data still tends to be collected by specialists without too much participation
from development team members, there is still certain hostility about the methods used and
the conclusions and recommendations obtained from testing. To overcome this, usability
practitioners have to spend their time resources to “make a case” for the usability data. This
activity takes additional time in already late breaking results making it a vicious circle.

Finally, another difficult and one of the most important problems, it is concerning
about when designing a usability evaluation: Key decisions must be made regarding
methods and techniques for data collection and analysis. There are some techniques and
tools that are more suited for basic research and have to be adapted significantly to fit into a
software development environment, these techniques are described in the section
“Techniques for Analyzing and Communicating Usability Data” [15].

2.3.4 Techniques for Analyzing and Communicating Usability Data

 

The following section describes several techniques for Analyzing Usability Data, as
in the field as in a laboratory. In general, the techniques involved affinity diagramming, data
visualization, prioritizing problems, and scenarios of use. Each group of techniques is
described below.

­ Affinity Diagramming ­ 

In general, the technique involves writing observations, comments, issues, and
concerns on index cards or adhesive sheets (). These cards or sheets are then laid out and
sorted to derive a pattern or structure observations. The technique was often used to help
sort and interpret the hundreds of comments generated during contextual inquiry that relate
to the user's work, environment, hardware, software, and organizational issues. The
comments can be structured by creating an affinity diagram or grouping along common
themes. By performing this grouping, patterns or trends can emerge from the derived
structure.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 22 

 
Figure 7. Affinity Diagramming 

 

There are several versions of this basic technique:

1. Affinity diagramming is used in analyzing observations from a usability test. For
example, in one application of the technique, team members entered observations on
3x5 cards which are collected by the usability practitioner and later the entire design
team gathered to categorize the cards into groups.

2. Another approach to affinity diagramming is to group pictures collected from
observations rather than textual descriptions (“picture-based affinity”).

In general, affinity diagramming is a simple and cost effective technique for asking
ideas from a group and obtaining results on how information should be structured.

- Data Visualization -

Several techniques emphasized the need to visualize user behaviour and performance
to assist analysis and presentation of findings. For example, “GUI morphing” is used to
highlight the impact of redesign of windows. Snapshots of an interface are taken before,
during, and after redesign. An a morphing application is used to display the transformation
from the old to the new interface, essentially, the windows change between a misaligned,
anaesthetic collection of controls to a thing of beauty. This presentation of data is considered
useful for showing management what user interface design efforts could do for a product.

Video snippets or screenshots are a popular way to make the data more “real”.
Typically these snippets and screenshots would show the difficulties users have had with a
product.

Another visualization technique, it is involved combining several approaches into a
multimedia presentation or report. For example, clicking on an image of an interface design
could pop up a video segment showing the difficulties users had with the selected control or
send some reports to the analyzer, in order to solve these problems or to get better the
application.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 23 

This technique is used in the main project where the data collector tool is involved.
The mobile devices take information in order to send it to the server and contribute to the
usability evaluation.

- Ordering Problems by Priority -

Evaluation, design and testing for usability evaluation, usually leads to the discovery
of many problems or concerns. Short product lifecycles and limited resources require that
problems be prioritized because it is unlikely that every problem will be fixed. Reporting
and rating the severity of “usability bugs” appeared to be a popular means of communicating
usability problems found in testing. Usability bugs are typically interpreted in the same
language as other types of bugs found in the system and can take advantage of the same
defect tracking mechanisms in place in most product development environments. Use of the
same defect tracking systems has the additional benefit of putting usability defects on
equality with others with the same defined priority. Another advantage of putting usability
bugs into the corporate bug list is that you can track how many were actually fixed.
However, the estimation of severity should be based on well-established guidelines and
frameworks, not in “gut feelings”. Defects could be logged by other members of the design
team such as documentation writers, product developers, quality engineers or other team
members who have been trained in estimating and categorizing problems using a common
framework.

- Creating Use-Scenarios -

Use-scenarios typically involve describing the people who will use the designed
product, the tasks and the contexts of the tasks. The scenarios are usually concrete. The
creation of use scenarios appeared to be motivated by several factors. One was an interest in
aggregating individual data to describe trends or to describe potential market segments.

Observational data from contextual inquiry could be used to create “character
maps”. This character maps are relevant attributes put together to build composite
characters, that illustrate a stereotypical user and stories of usage scenarios built for each
user. These characters and scenarios could be used rather like a coat hanger, to hang new
design ideas on, and see if they fit.

- Think-aloud protocol -

Think-aloud protocol is a method to gather data in usability testing that involves
participants thinking aloud as they are performing a set of specified tasks. Users are asked to
say whatever they are looking at, thinking, doing, and feeling, as they go about their task.
This enables observers to see first-hand the process of task completion (rather than only its
final product). Observers at such a test are asked to objectively take notes of everything that
users say, without attempting to interpret their actions and words. Test sessions are often
audio and video taped so that developers can go back and refer to what participants did, and
how they reacted, and study about that behaviour. The purpose of this method is to make

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 24 

explicit what is implicitly present in subjects who are able to perform a specific task. But
this is not easily seen for developers, due to is important to say that such people are taking
part of a test, and their reactions are not always the same that in the real world.

- Heuristic Evaluation -

Heuristic Evaluation is another usability inspection method for computer software
that helps to identify usability problems in the user interface (UI) design. It specifically
involves evaluators examining the interface and judging its compliance with recognized
usability principles (the “heuristics”) [18].

In general, heuristic evaluation is difficult to do for only a person because he will
never be able to find all the usability problems in an interface. Luckily, experience from
many different projects has shown that different people find different usability problems.
Therefore, it is possible to improve the effectiveness of the method significantly by
involving multiple evaluators.

But how can the number of evaluators be decided? Figure 8 shows the proportion of
usability problems found as more evaluators are added and it also shows the ratio of benefits
to cost per number of evaluators. The figure clearly shows that there is a nice payoff from
using more than one evaluator. It would seem reasonable to recommend the use of about
five evaluators, but certainly at least three. The exact number of evaluators to use would
depend on a cost-benefit analysis. More evaluators should obviously be used in cases where
usability is critical or when large payoffs can be expected due to extensive or mission-
critical use of a system.

 
Figure 8. Number of evaluators vs proportion of usability problems found 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 25 

 
Figure 9. Number of evaluators vs Ratio of benefits to costs

- Instant Data Analysis (IDA) -

A technique for increasing the speed of data analysis and improving its focus is IDA.
Used in combination with the think-aloud protocol for user-based evaluations, this technique
makes it possible to conduct a complete usability evaluation in a day; that is, a technique for
reducing the efforts spent on analyzing data from usability evaluations. The aim of applying
this technique is to make it possible to conduct an entire usability evaluation in one single
day. IDA technique is not the best technique for analyzing usability data, but is effective in
supporting fast identification of the most critical usability problems of a software system
[15].

The IDA technique does not aim at producing an elaborated theoretical understanding
of the use of the system being evaluated. Rather it aims directly at producing a ranked list of
usability problems for the design team to take into consideration when redesigning the
system.

- Expert analysis -

Expert analysers are used to get the collective observations and opinions of the “best
of the breed”. They are particularly useful when there is not one correct solution or
procedure.

 

 

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 26 

3 TECHNOLOGIES

3.1 SMARTPHONES

3.1.1 What is a smartphone?
 

A smartphone is a mobile phone that offers advanced capabilities beyond a typical
mobile phone, often with functionality similar to a PC. Nowadays, there is not a standard
definition of a smartphone because there is no agreement in the industry. For some, a
smartphone is a phone that runs complete operating system software providing a
standardized interface and platform for application developers. For others, a smartphone is
simply a phone with advanced features.

How it can be possible? These days, you can combine in a small device that fits in
your pocket, a mobile phone with the technology of your computer. That would not be
possible without the advancements realized during the last years in integrated circuits,
microprocessors, semiconductor miniaturization, battery technology and, of course, the
invention of telephone and radio. Computers have progressed from the old centralized
mainframes to the current personal computers, especially since the creation and extension of
Internet, World Wide Web and email around the population that made computers an
important part of everyday life as productivity, entertainment and communication device.
That is reason why laptops were introduced into the market to allow personal computers to
be portable and then, the size of the PDA made that even easier. In that moment, the
creation of smartphones, allow the combination of mobile phone and PDA in single and
small device saving space in your bag.

What can I do with my smartphone? In order to make an idea of smartphone’s
capabilities, here it is a list of tasks that can be possible to carry out with it:

 - Send and receive mobile phone calls.

 - Manage personal information as notes, calendar and to-do list.

 - Communication with laptop or desktop computers.

 - Establish a WiFi connection.

 - E-mail.

 - Instant messaging.

 - Applications such as word processing programs or video games.

 - Play audio and video.

- Data synchronization with applications like Microsoft Outlook and Apple's iCal
calendar programs.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 27 

And the promised future applications for smartphones are even more impressive. For
example, the Nokia 6131 NFC is a phone that could allow the phone act as a wireless credit
card using a two-way communication system to transfer payment information thanks to
near-field communication technology.

3.1.2 Software in smartphones
 

We can visualize the software for smartphones as a software stack consisted of the
following layers:

 - Kernel: management systems for processes and drivers for hardware.

 - Middleware: software libraries that enable smartphone applications (such as
security, web browsing, messaging, etc).

 - Application execution environment (AEE): application-programming interfaces,
which allow developers to create their own programs.

 - User interface framework: the graphics and layouts seen on the screen.

 - Application suite: the basic applications users access regularly such as menu
screens, calendars and message inboxes.

3.1.3 Operating systems in smartphones
 

The most important software in any smartphone is its operating system because it is
who manages their hardware and software resources. Some OS platforms cover the whole
range of the software stack; some others may only include the lower levels (typically the
kernel and middleware layers) and rely on additional software platforms to provide a user
interface framework. The most common smartphone operating systems are:

 - Symbian OS from Symbian Ltd.

Symbian OS is used nowadays for more than 100 different models of phones. The
operating system consists of the kernel and middleware layers of the software stack, while
the upper layers are supplied by application platforms like S60, UIQ, and MOAP.

This operating system is dominant in most markets worldwide right now, with an
estimated market share of sales of 65 percent (according to Market Share Sales Q4 2007),
but it is estimated that the operating systems Linux and Microsoft will hold more market
share than Symbian in 2010. But, until now, the success of Symbian is due to its shareholder
and customer Nokia. Although, it is used by all the main handset manufactures as BenQ,
LG, Motorola, Samsung and Sony Ericsson.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 28 

Figure 10. A Nokia N92 with Symbian OS 

- Windows Mobile from Microsoft

Windows Mobile OS covers all layers from the software stack, from the kernel to the
application interface. The operating system is based on Windows CE along with Windows
Mobile middleware. The strongest characteristic of this OS is its compatibility with the
Microsoft Office suite of programs.

Microsoft had the 12 percent of the market share sales (according to Market Share
Sales Q4 2007). And at the beginning of 2007, Microsoft unveiled the latest version of the
software platform: Windows Mobile 6 Professional for touch screen devices, and in the first
half of 2008 was improved with Windows Mobile 6 Standard.

Figure 11. The T­Mobile Dash with Windows Mobile

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 29 

- iPhone OS from Apple Inc.

The iPhone OS is the operating system developed by Apple Inc. for the iPhone (Figure
12) and iPod Touch. This operating system is derived from Mac OS X, and is based on the
same kernel and Darwin core as Mac OS X; besides, it has three abstraction layers: a Core
Services layer, a Media layer and a Cocoa Touch layer. The native application support was
recently announced in March 2008 and nowadays requires a beta version of the iPhone OS
which is available for developers and corporations for testing. On June 2008, the new
release of iPhone OS 2.0 should be available and it will be free, but until last year it had the
7 percent of the market share sales (according to Market Share Sales Q4 2007).

Figure 12. The iPhone by Apple 

- RIM BlackBerry operating system

Blackberry OS is the proprietary software platform made by Research In Motion for
their Blackberry line of handhelds. This operating system was created for business but,
lately, it started to be used for a lot of people, especially in USA, and it has an 11 percent of
the market share (according to Market Share Sales Q4 2007).

It is focused on easy operation and the current OS allows complete wireless activation
and synchronization with Exchange’s e-mail, web browsing, install messaging and personal
information management software. Recently it has seen a surge in third-party applications
for the Blackberry, like games and productivity applications, and it has been improved to
offer full multimedia support.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 30 

Figure 13. A Blackberry 8700C 

 

 
Figure 14. The Linux smartphone

• Linux operating system

Linux has an important characteristic that differs from the other operating systems,
and it is that its development is done by a community of developers and several costumers
rather than by a central company, that is the reason why it is called an organic OS, because
developers are constantly changing and updating the operating system, even in the kernel
layer, and platforms based on Linux can be very different from one to another, for example
Motorola and TrollTech that are very incompatible.

Linux is right now the operating system that supports more processors than any other
one in the market but Symbian is still the leader on sales, with the 5 percent of market share
sales (according to Market Share Sales Q4 2007) for Linux. This is because smartphone
companies find risky to invest in Linux due to the differences between platforms. To avoid
this situation, a standardized platform based in Linux is being developed by the LiMo
foundation, an organization created by Motorola, NEC, NTT DoCoMo, Panasonic, Orange,
Samsung, Vodafone and the newest member Texas Instrument. The same goal has the Open
Handset Alliance, a group of more than 30 technology and mobile companies created mainly
by Google, which is developing Android: the first complete, open, and free mobile platform
based on Linux that will be available by the second half of 2008.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 31 

 - Garnet OS

Garnet is an operating system, formerly known as Palm OS. Palm OS was initially
developed by U.S. Robotics' owned Palm Computing, Inc. for personal digital assistants
(PDAs), but currently is owned by the company ACCESS.

The Garnet operating system combines a Linux platform with applications written for
the old Palm OS that was mainly used in PDAs and the Treo line of smartphones. Since the
end of 2007, the new mobile phones with Garnet OS are available in the market.

Figure 15. The Treo 680 smartphone with Garnet OS 

3.1.3.1 Comparative between operating systems and market sales

As it was explained in the last pages, there are many different operating systems for

mobile phones, each one of them has its advantages and disadvantages, and of course, its
field of devices where are used in. But, to have a general idea of the main characteristics of
these operating systems and a visual comparative of all them together, it is necessary to take
a look in the following table (Table 1), where it is represented a summary about the OS
explained, including the latest version of its platform and the next expected releases, the
weakest and strongest points of each one of them, and the main properties of each operating
system.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 32 

Table 1. Road Map for SmartPhones Operating Systems in May 2008 

Current
release

Symbian 9.5

Linux

LiMo Platform
Release 1

Palm OS 5.4
Garnet and
Palm OS
Cobalt

Windows

Mobile 6.1
“Crossbow”

BlackBerry
4.5

iPhone OS

Next

release

Unknown

LiMo Platform
Release 2,
expected in
early 2009.
Android by
Google in

Summer 2008.

Garnet OS 5.5

Windows
Mobile 7

“Photon” is
planned for

release in 2nd
half of 2009

Unknown

iPhone OS 2.0
is expected for

end of June
2008

The trend

Symbian 9.5
includes

components of
the IP

Multimedia
Subsystem in
anticipation of

IMS-based
services such as
videoconferenci
ng over IP and
the ability to
automatically

switch between
cell and Wi-Fi

networks.
There's also a

location API for
GPS-enabled

applications. In
development:
Bluetooth kits
for plugging

into car audio
systems.

The LiMo
foundation
continues

developing its
own Linux OS
to unify Linux

development for
mobile phones.
The same goal
has Android,
and the Open

Handset
Alliance created
by Google last

year.

The Access
Linux Platform
will include an
emulation layer

that supports
applications
originally

developed for
Palm devices.

Separately,
Palm Inc. is
developing

another Linux-
based successor

to Palm OS
Garnet.

Crossbow is
strongly linked

to Windows
Live and

Exchange 2007
products.

In development:
Microsoft is not

talking, but
industry

observers
believe Photon
will eliminate
the need for

separate
software

development
kits for

Windows
Mobile's

Smartphone and
Pocket PC
editions.

RIM jumped
into consumer-

class
smartphones in
September 2007

with the
BlackBerry

Pearl running
version 4.2 of

the BlackBerry
OS. The
upgraded
version

BalckBerry 4.5
has new

features like
digital camera

support, HTML
support for

mail, upgrade
Over The Air
and streaming

support.

Tiger supports
HTML e-mail,

Web
browsing, and
apps found on

Mac
computers like

widgets,
Safari,

calendar, text
messaging,

notes, and an
address book.

Strength

Widely
available, global

market leader

Army of
developers

Ease of use

Windows

integration

Designed for
business

Sleek
consumer

design

Weakness

Small USA

presence

Incompatible
OS variants

Declining

market share Unstable

Few non-RIM

devices
supported

In compatible
OS variants

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 33 

Due to the variety of features in the different operating systems, its situation on the
market is also very different. The following graph (Figure 16) explains how was divided the
sales of smartphones per operating system, during 2007.

The world market is dominated by Symbian, being the most sold in each region, less
in North America, where the market is very different from the rest of the world, with strong
companies like Microsoft and RIM BlackBerry and Garnet (Access), followed by Apple that
will increase its sales with the world launch of its iPhone, but until 2007 it was sold only in
the USA.

In Europe, Middle East and Asia (EMEA) the market is dominated by Symbian, with a
small Microsoft pocket and an even smaller RIM and Linux market share. It's also
interesting to see the large Linux share in Japan and China (PRC).

The column dedicated to the rest of the world (ROW) represents that in the
unspecified countries the leader is also Symbian. Microsoft and Linux has a small
percentage of sales and Acces and RIM even smaller.

Figure 16. Smartphone shares around the world in 2007  

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 34 

3.2 SYMBIAN OS FOR MOBILE DEVICES
 

3.2.1 What is Symbian?
 

Symbian OS is an open standard operating system, designed for data-enabled mobile
devices (smartphones) produced by Symbian Ltd. This operating system has associated
libraries, user interface frameworks, data services enablers, application engines and
reference implementations of common tools that make the work easier to developers. Also,
it offers a high level of integration with communication and personal information
management. It supports Java, PC synchronization, Bluetooth local wireless access and
GPRS packet-switched data. Besides, it is open for third-party development by independent
software costumers, enterprise IT departments, network operators and Symbian OS
licensees.

Symbian OS is an evolution of EPOC operating system from the company Psion
Software, but in 1998 Ericsson, Nokia, Motorola and Psion created a company to support the
EPOC OS as an independent entity. Nowadays, Symbian is owned by Nokia (47.9%),
Ericsson (15.6%), Sony Ericsson (13.1%), Panasonic (10.5%), Siemens AG (8.4%) and
Samsung (4.5%).

3.2.2 Symbian OS Phones
 

Symbian OS phones have evolved so much since the first one shipped, the Ericsson
R380 in November 2000 (Figure 17), and the first open Symbian phone available, the Nokia
9210 Communicator in 2001 (Figure 18).

Figure 17. The Ericsson R380 

Figure 18. The Nokia 9210 Communicator 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 35 

In 2007, out of more than a hundred million smartphones sold worldwide, three
quarters of them ran Symbian OS. So, we can say that Symbian OS is the world-leading
open operating system that powers the most popular and advanced smartphones today from
the world’s leading handset manufacturers. As example of this, we have the following
devices that have used Symbian OS as operating system and this list grows almost every
week [26]:

- Ericsson R380 (Figure 17) was the first commercially available phone based on
Symbian OS in 2000. This device was closed and the user could not install new C++
applications. However, the R380 could not even run Java applications, and for this reason,
some have questioned whether it can properly be called a 'smartphone'.

- Using the Nokia Series 80 interface: Nokia 9210 Communicator smartphone
(Figure 18) shipped in 2001, 9300 Communicator (2004) and 9500 Communicator (2004).

- UIQ interface: Used for PDAs such as Sony Ericsson P800 (2002), P900 (2003),
P910 (2004), P990 (2005), W950 (2006), M600 (2006), P1 (2007), W960 (2007), Motorola
A920, A925, A1000, RIZR Z8, RIZR Z10, DoCoMo M1000, BenQ P30, P31 and Nokia
6708 using this interface.

- Nokia S60 interface (2002): Is used in various phones, the first being the Nokia
7650, then the Nokia 3650, followed by the Nokia 3620/3660, Nokia 6600, Nokia 7610,
Nokia 6670 and Nokia 3230. The Nokia N-Gage and Nokia N-Gage QD gaming/smartphone
combos are also S60 platform devices. It was also used on other manufacturers' phones such
as the Siemens SX1, Sendo X, Panasonic X700, Panasonic X800, Samsung SGH-D730,
SGH-D720 and the Samsung SGH-Z600. Recent, more advanced devices using S60 include
the Nokia 6620, Nokia 6630, the Nokia 6680, Nokia 6681 and Nokia 6682, a next
generation Nseries, including the Nokia N70, Nokia N72, Nokia N73, Nokia N75, Nokia
N80, Nokia N81, Nokia N82, Nokia N90, Nokia N91, Nokia N92, Nokia N93 and Nokia
N95, and the Enterprise model Eseries, including the Nokia E50, Nokia E51 Nokia E60,
Nokia E61, Nokia E62, Nokia E65, and Nokia E70.

- Nokia Series 90 interface: Nokia 7710 (2004).

- Nokia 6120 classic, Nokia 6121 classic.

- Fujitsu, Mitsubishi, Sony Ericsson and Sharp phones for NTT DoCoMo in Japan,
using an interface developed specifically for DoCoMo's FOMA "Freedom of Mobile
Access" network brand. This UI platform is called MOAP "Mobile Orientated Applications
Platform" and is based on the UI from earlier Fujitsu FOMA models.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 36 

3.2.3 The device: Nokia N70
 

The model of Symbian OS smartphone used in this project is the Nokia N70-1 (Figure
19), one of the handsets in the Nokia Nseries line of smartphones. It is a multimedia 3G
smartphone made by Nokia and launched in the third quarter of 2005.

The operating system used by the Nokia N70 is the Symbian OS v8.1a, and the S60
user interface, with the developer platform S60 2nd Edition, Feature Pack 3.

The Nokia N70 is a smart and elegant tool for real time visual sharing, also it has
MMS, e-mail, Bluetooth, WAP 2.0 browsing and Java technology. The device is equipped
with two integrated cameras, one of 2.0 megapixel in the back with flash and another VGA
in the front with two-way video call and real time video sharing application; it has also FM
radio, Bluetooth, digital music player and support for 3D Symbian, Java games and other
S60 2nd Edition software.

At the time of its launch, the Nokia N70 had the most built-in memory alongside its
system memory and was the penultimate (before the N72) Symbian OS 8.x device released
by Nokia, since the introduction of their new OS9 platform released in 2003 which offers
more flexibility than the original that was made in 1998.

 
Figure 19. Nokia N70 

 

 

 

 

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 37 

3.3 THE DEVELOPING TOOL: CARBIDE.C++
 

3.3.1 What is Carbide.C++?
 

Carbide.c++ is a software development tool for C++ development on Symbian OS. It
is used to develop phones that use this operating system, as well as applications that run on
those phones. It is based on the open Eclipse IDE (Integrate Development Environment)
platform enhanced with additional plug-ins which make Eclipse understand how to handle
Symbian C++ source files as well as build Symbian projects and, in that way, it makes
possible to support the Symbian OS development on the S60 platform, the Series 80
platform, UIQ and MOAP.

Carbide.c++ belongs to the new generation of mobile development tools family
created by Nokia, the Carbide development tools. It was created to replace the program
CodeWarrior for Symbian OS as the principal development environment for Symbian OS,
but being a new line of products, Carbide.c++ has not displaced yet CodeWarrior within the
Symbian OS development community.

3.3.2 Pros and Cons of the development in Carbide.c++
 

The reason because Carbide.c++ has not displayed CodeWarrior yet, it is due to
several complains that it has from developers, as, for example, lack of Symbian OS style
coding, difficulty to find elements in files, not good speed of import Symbian OS build files
(mmp files) and difficulties to do debugging on devices.

In addition, the Managed Build System doesn't work properly yet; its method of work
is to delete everything and start again rather than make an incremental built. Otherwise,
however, the reception of this tool has been warm between developers because of its
advantages, such as, a better development environment than CodeWarrior. The IDE
(“Integrated Development Environment”) is based on Java so there are some concerns about
speed and memory; the IDE is often slow and has a pretty big memory use.

Also, another good point that Symbian C++ developers can find with this tool, it is that
for those who already have various Symbian projects on their computer and have been either
using CodeWarrior or the command line to build them, will find that Carbide.c++ provides a
facility to import easily their projects and migrate to Carbide.c++ without having to create a
new project and then manually insert the source files.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 38 

Figure 20. Development environment of Carbide.c++ 

3.3.3 Software Development Kit (SDK)
 

In addition to Carbide.c++, to do Symbian OS C++ development you will need to
obtain also a Symbian OS Software Development Kit (SDK). A SDK is typically a set of
development tools that allows a software engineer to create applications for a certain
software package, software framework, hardware platform, computer system, video game
console or operating system, as it is done in this project with Symbian OS.

Usually, this SDK contains the emulator and also the libraries and header files
required for Symbian OS development. Once installed, the own Carbide.C++ offers the
opportunity to download the necessary SDK but it can be also download independently
from, for example, the Nokia web site.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 39 

In addition to the common user interface components and standard application suite,
the used SDK, contains all the interfaces to the dynamic link libraries, executables and
device drivers for controlling the keyboard, display and Bluetooth. While it is optimized for
the requirements of mobile devices, including economic use of power CPU and memory
resources, the Symbian OS is extremely robust. The Symbian operating system is based on a
client-server architecture, where many applications are clients that use the resources of
servers.

For the development of this project, it has been used the version of SDK for Nokia
Series S60 platform created for the mobile phone Nokia N70, the device we are working
with, and it is the S60 SDK 2nd Edition Feature Pack 3.

3.3.3.1 What is S60?

The Nokia S60 platform is software for smartphones with advanced data capabilities
and many built-in features for devices, like messaging, calendar and a wide variety of
personalization options and advanced web browsing. It is used in the majority of Symbian
OS smartphones shipped to date. Although owned by Nokia, it is also licensed to other
handset manufacturers such as Panasonic, Samsung and Siemens.

Based on the Symbian OS, it includes an application suite, user interface framework,
and middleware components (Figure 21). The flexibility of S60 allows a variety of hardware
designs and software configurations.

Figure 21. S60 Software 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 40 

3.3.3.2 S60 Software versions and editions

In order to introduce new features and functionality, new releases of S60 based on
Symbian OS are periodically brought to market. While introducing new S60 releases,
Edition level releases contain more improvements and architectural changes. Feature Packs,
on the other hand, are used to introduce new features on top of this main edition
architecture. Each feature pack also includes all the functionality of the previous feature
packs before that edition.

As it was explained previously, the device used to develop this project works with S60
2nd Edition Feature Pack 3, that is the latest release of this editions before the creation of the
3rd edition of this series (Figure 22).

Figure 22. S60 releases 

3.3.4 The emulator
 

The emulator is a Windows application that simulates the phone hardware on the PC.
This enables the development of phone software to be substantially PC-based, with only the
final development stages focused on the hardware. The use of the emulator saves time at the
beginning of the development, since you can use the Carbide.c++ development environment
to debug the code easily and to resolve most of the initial bugs and design problems without
copying each time the executable file on the phone. For example, if a panic occurs in the
code and you are working on the emulator, the debugger can provide information to
diagnose the error that caused it.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 41 

Besides, the use of the emulator reduces the number of times it is needed to create an
installation package, transfer it to the mobile phone and install it, which otherwise would be
wasted time in the early phases of development.

The Figure 23 represents the view of the emulator used in the development of this
project. It has the appearance of a common Nokia mobile phone, as the real one where the
tool designed will be used.

 
Figure 23. View of the Emulator 

 

 

 

 

 

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 42 

 

4 DESIGN

In this chapter, the design of the whole scenario, in which the data collection tool has
been implemented, will be described. Besides, as it was explained before, in order to use the
advantages of data collection into practice, an application to do this work has been designed.
This application has different parts, each of them with different specific aims; the design of
these parts and their different functions, will be explained in this section.

4.1 OVERVIEW OF THE WHOLE SYSTEM
 

Firstly, the scenario where the tool designed has to work, it is shown in the Figure 24,
in order to get a complete idea of the whole project in which its tool is only a small part of a
complete system.

Figure 24. Representation of the whole system application 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 43 

In this figure, we have represented the entire project developed in the HCI laboratory,
where the tool studied in this report, has taken part. On the left, there are the mobile phones
where our tool has to be implemented; under them there are represented some PDAs that
thanks to another tool designed by Raúl Esgueva, they are doing the same task of gathering
data and sending files to the server that our tool, but in different devices, so the
programming of these tools is different to our, although there are some points in common.

As it was explained before, our tool and the one designed for the PDAs, besides the
collection of the data, they will send files to a server through Internet, using the network that
it is on their range. This server has a tool, designed by Héctor Martín, to collect the data
received from the mobile devices and PDAs and to store it correctly.

Once the data is stored in the server, this information will be used by another
application designed by George, with the objective to analyze it, doing different statistics
and usability tests, and facilitating the work of an analyzer who will have to study the data
collected.

Then, it is needed to take in consideration the scenario where this complete system
will be used. This project was created with the goal to use it in a museum, in which it is
necessary to communicate each mobile device with the others and with the server; the
objective is to show information to the visitors of the museum, which will carry one of the
devices. This data given to the visitors concerns not only about a guide of the sculptures,
paintings and more elements exhibited, but also about games created to entertain children
during the visit and more applications.

This overview of the complete project that is been developed by the group of Human
Computer Interaction of the University of Patras, could show us how it is needed to do a
good job in the collection of the data, in the mobile phones as in the PDAs. In this situation
is where the tool described in this report appear trying to give a solution to gather data in the
smarthphones and then use this data to do the usability evaluation in the following steps of
the project.

As it is imagined, always there are problems in the development of a new application,
and, in this case, the main problems are related to how the data is stored and how it is sent to
the server. Moreover, it has to be taken in consideration the necessity of logging the data in
the different devices in the same way, even if for ones of them the tool is programmed in
Symbian C++ language and for the others in .NET Framework C#; because in order to
process and manage this data in the server side with the same infrastructure for all the
devices, the designed tools need a similar structure to construct and send the information.

Also, it is necessary to take in considerations the problems that could appear because
of the network used to communicate all the elements of the project. One of then is the
synchronization of all the equipments to share the information; other could be the possible
bottleneck created if the server where all the mobile devices send its data is down and
cannot see the information until the problem is fixed.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 44 

4.2 DATA COLLECTOR TOOL FOR SYMBIAN PHONES
 

The development of the tool for Symbian phones to collect data and send it to the
server is based in the creation of a Dynamic Link Library that includes the classes and
functions necessaries for the correct implementation of an application for a user that wants
to do these tasks.

4.2.1 What is a Dynamic Link Library?
 

A Dynamic Link Library (DLL) is a library of compiled C++ code that is loaded in
memory when is needed and its functions are available to all running programs. Only a
single copy of each loaded DLL exists in memory at a time. This is more efficient than the
traditional static library, where each executable that uses the library’s functions links to a
separate copy of its code.

On Symbian OS there are two main types of DLL:

- Shared library DLL, also known as static interface DLL, are the traditional style
of libraries, containing a collection of classes and functions that are made available to call
programs.

- Polymorphic DLLs are used as plug-ins, as instead of only providing classes and
functions as in shared library DLLs. They provide a concrete implementation for some
abstracted interface.

For this project, it is used a shared library DLL that implements library code that will
be used by multiple components of the user’s application. The filename extension of the
shared libraries is always .dll, as in the tool developed, where the library is called
Library1.dll.

This shared library exports API functions according to a module definition file,
currently known as .def file. It has any number of exported functions from the library, and
each one of them is an entry point into the DLL. It releases a header file (.h) for other
components that use the library functions to compile against, and an import library (.lib) to
link against in the .mmp file of the applications that use the library, in order to resolve the
exported functions.

Then, when the executable code that uses the library runs, the Symbian OS loader has
the task of loading any shared DLLs that it links to and any further DLLs that those DLLs
require, doing this recursively until all shared code needed is loaded.

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 45 

4.2.2 Class diagram of the tool
 

The class diagram of this tool was designed to be easy to understand, and the
communication represented between the different classes is very simple and it can be
followed in the Figure 25.

 Firstly, the Application class is the first one created, by framework, when the
application that is using the data collector tool wants to be used, and it will represent the
properties if this application and some specific information. Then, this Application class will
create an object of the Document class that takes care of the data related to the application
and creates the interface between user and application. The Application UI class implements
this interface, and controls the views of the application, besides it creates an object of the
Container class that will handle the components of this interface.

Then, from the Application User Interface class, one of the methods will create an
object of the Application1Engine class that implements the events that has to be log, and
interact to the library creating an object of it and calling its functions. This
Application1Engine class contains some object of the class Property necessary to insert the
name and value of the properties from the event to collect. When all the properties are stored
in elements of the class Property, there are included in to an array called PropertyArray that
acts as a list of properties that will be pass as parameter to the library methods.

Once the Library received the array of properties, this information will be extract and
treated to convert this data to a format understand by the server or to write it in a local log
file. Besides, the library will create a connection, using some elements of the
RHTTPSession and RHTTPTransaction auxiliary classes; and through it connection will
communicate with the server to send and receive data.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 46 

 

Application Class
Class

- Methods:

 CreateDocumentL ()
 AppDLLUid()

 

Application UI Class
Class

- Methods:
 DynInitMenuPaneL ()
 HandleCommandL ()
 HandleKeyEvent()
 HelpContextL () 

 

   

Container Class
Class

- Methods:
 CountComponentControls ()
 Component Control ()

Draw ()
 HandleControlEventL ()
 

 

Document Class
Class

- Methods:
 CreateAppUiL() 

CApplication1Engine
Class
- Methods:
 SetConfiguration()
 LogEvent ()
 TimeStamp ()
 

Property
Class

 - Methods:
 Property()
 

CLibrary1
Class

 - Methods:
 CreateFile()
 LogProperties()
 FinishFile()
 GetDateTime()
 SendFileToServer()
 ConvertDatatoSend()
 IssueHTTPPostL()
 CancelTransaction()
 SetHeaderL()
 ReleaseData()
 GetNextDataPart()
 Reset()
 OverallDataSize()
 MHFRunL()
 MHFRunError()
 SetUpConnectionL()
 TimeEvent() 
 

PropertyArray
CArray<Property
>
 

RHTTPSession
Class
 

RHTTPTransaction
Class
 

Figure 25. Class Diagram of the tool 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 47 

 

4.2.3 Application Programming Interface
 

The application programming interface (API) is a set of declarations of the methods
that an operating system, library or service provides to support requests made by computer
programs. [13]

For the tool developed, next there are explained the library created, the classes used,
the methods developed and the variables included, in order to do understand better the code
and the different tasks done for it.

- The library -

As it is said before, in this tool it is used a Dynamic Link Library (DLL) that
contains the necessary methods to carry out the tasks that the user asks to the application
linked to it.

Name  Description 

Library1

This is the DLL that contents all the classes and functions to
collect data locally and to send data to a server. The user

application links against it to use their methods and to do the
necessary tasks with the data.

Table 2. Content of the DLL Library1 

 

• Classes developed included in the library –

The library includes two classes developed by the programmer during the elaboration
of this tool, one of them is the main one in the project, the class CLibrary1 that contains
most of the methods implemented. The other one, the class Property is used to set the name
and value of the properties in each event, as it will be explained next.

 

Class  Description 

CLibrary1
This class manages the functions includes in the library, includes

all the necessary methods to log an event and sent data to the
server. An object of this class is created in the user’s application.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 48 

Property This class is used to give a name and a variable to every property
that the user wants to log in an event.

Table 3. Classes developed included in the DLL Library1 

 

• Classes used in the library provided by the platform -
 

Besides the previous classes, the library makes use of other classes that are not
developed by the programmed, but are provided by the platform that includes a group of
references to this kind of classes, that are very common in applications, to make easier the
work for the developer. And in this library, these two classes are very important to create an
object of them because it is necessary to establish a connection with the server where the
data wants to be sent, so they must be declared in the header file of the library.

However, several classes more provided by the platform are used in the methods of the
tool designed, but not all of them are explained in this document, only the most important
ones for its development that must be declared in the header files for a correct operation
creating objects of these classes.

Class  Description 

RHTTPSession
This class handles sessions. This session is a set of HTTP
transactions using the same connection settings and the same set
of filters.

RHTTPTransaction
This class manages a HTTP transaction. It encapsulates one HTTP
request and response. Each transaction must be associated with a
session.

Table 4. Classes from the platform used in the DLL Library1 

 

- Class CLibrary1 –

 This class of the DLL library implements the most of the necessary tasks that the
application tool wants to do to log data locally and to send data to the server. It means that
the code of this class is the most complex and important of the project and it contains many
functions and variables to do this job.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 49 

1. Syntax

This is the syntax of this class CLibrary1, and it is shown that this class inherits from
the class CBase, the class MHTTPDataSupplier, used to deliver the response data to the
client and to supply request body data to HTTP in POST transactions; and the class
MHTTPTransactionCallback, used to receive events during the transaction.

class CLibrary1: public CBase, public MHTTPDataSupplier, public
MHTTPTransactionCallback

2. Constructors and Destructor

This class has a two-phase construction, so it implements the following methods to
create an object of this class in several steps and one more to destroy the created object after
its use.

Access  Type  Name  Description 

Public static NewL

Create a CLibrary1 object and returns a
pointer to the created instance of

CLibrary1. It is called by the user’s
application and receives the parameter

Configuration, that is send to the
function NewLC that calls to continue

the creation of the object.

Public static NewLC

Create a CLibrary1 object and returns a
pointer to the created instance of

CLibrary1. It is called by the method
NewL and receives the parameter
Configuration, that is send to the

function ConstructL that calls to continue
the construction of the object.

Private CLibrary1 Perform the first phase of two-phase
construction of a CLibrary1 object.

Public ~CLibrary1 Destroy the object created.

Public void ConstructL

Perform the second phase construction of
a CLibrary1 object. It receives the

parameter Configuration as a variable to
know if the user wants to log locally or

in the server side.

Table 5. Constructors of the class CLibrary1 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 50 

3. Methods

 The following methods are implemented in the class CLibrary1 to log events in a file
and to send data to the server. It is necessary to take in consideration that some of these
functions are inherit from the class MHTTPDataSupplier as GetNextDataPart,
OverallDataSize, ReleaseData and Reset; and also there are methods inherit from
MHTTPTransactionCallback as MHFRunL and MHFRunError.

Access  Type  Method  Description 

public void CreateFile() Connect to the file server to create a
new file to log events.

public void LogProperties()

Receive the array PropertyArray with
the properties of the event and write

this information in the file. After that,
deletes the array.

public void FinishFile()
Finish the file where the events are

logged and close it. Also, disconnect
from the server file.

public TPtrC GetDateTime()

Get the date and time when is called
and returns it to the method CreateFile

to set the name of the log file
depending on the moment when is

created.

public void SendFileToServer() Open a new HTTP session.

public void IssueHTTPPostL() Starts a new HTTP POST transaction.

public void ConvertDatatoSend() Set the data to send to the server.

public void CancelTransaction() Closes currently running transaction
and frees resources related to it.

private void SetHeaderL()
Used to set header value to HTTP

request. So, the IssueHTTPPostL calls
it during its execution.

private void ReleaseData()
Inherited from MHTTPDataSupplier,

it allows us to release resources
needed for previous chunk. This

function is called by MHFRunL in the

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 51 

case EGotResponseBodyData.

private TBool GetNextDataPart()

Inherited from MHTTPDataSupplier,
this function is called when next data
part is needed by MHFRunL in the
case EGotResponseBodyData and it
has to return ETrue if the received

part is the last one.

private TInt Reset()

Inherited from MHTTPDataSupplier,
it is called by framework to reset the
data supplier that should return to the
first part of the data. In the practise an
error has occurred while sending data,
and framework needs to resend data.

private TInt OverallDataSize()

Inherited from MHTTPDataSupplier,
it is called by framework. We should
return the expected size of data to be
sent. If it is not know we can return

KErrNotFound.

private void MHFRunL()

Inherited from
MHTTPTransactionCallback and

called by framework to pass
transaction events.

private TInt MHFRunError()

Inherited from
MHTTPTransactionCallback and
called by framework when a leave

occurs in handling a transaction event.

private void SetupConnectionL()

Call by IssueHTTPPostL to start a
connection. The method set the

internet access point and connection
setups.

private TPtrC TimeEvent()

Return the date and time when it was
called, it is used to get a timestamp for
the events logged in the server in the

POST transaction.

Table 6. Methods of the class CLibrary1 

4. Global Variables of this class

 As this class CLibrary1 do many tasks to log events and sent data to the server, the
number of variables is high and some of them are used in several functions of the class, so

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 52 

the following members are defined in the header file of the class for their use along the
different methods.

Access  Type  Name  Description 

public TBool iServer Variable set true if user wants
to log data in the server.

public TBool iLocally Variable set true if user wants
to log data locally.

public RFs fsSession
The file server connection

opened to work with files when
we log events locally.

public RFile file
Created as object of the class
RFile to handle files when we

log events locally.

public TBuf<40> fName

The name of the logged file to
store data locally that will vary
depending on the time when is

created.

public HBufC8* iPostData Contain the data for the HTTP
POST transaction.

public HBufC8* iPostDataImage

Variable with the same size of
the data to send, that is used to
operate with it without writing
on the original data to send and

avoid problems of losing
information.

public TBool iRunning Variable set true, if the
transaction is running.

public RHTTPSession iSession

 Represents the session opened
to send data to the server. It is

an object of the class
RHHTPSession explained

previously.

public RHTTPTransaction iTransaction

Represents the transaction
opened to send data to the
server. It is an object of the
class RHHTPTransaction

explained previously.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 53 

public RSocketServ iSocketServ Represents the socket used to
open a connection.

public RConnection iConnection
Represents the connection

opened in the socket to send
data to the server.

public TBool iConnectionSetupDone Variable set true to know that
the connection is up.

public HBufC* iResponseBuffer Variable to store the response
body data.

public TBool iDataAvailable
Variable set true to know that
there is data available to be

sent.

public TFileName iFileName

Contain the name of the file to
send to the server to include its

data in the object
iReqBodyFile.

public RFs iFileServ
The file server connection

opened to work with files when
we send data to the server.

public RFile iReqBodyFile
Object of the class RFile to

handle files when data is sent to
the server.

Table 7. Global variables in class CLibrary1 

- Class Property -

This class is used to get and store the information from each property of the event that
the user wants to log. It is composed by two fields, the name and the value of the property,
and when these variables are is loaded in an object of this class, the information is sent to an
array that contains the list of all the properties of the event.

1. Syntax of the class

class Property

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 54 

2. Methods

This class implements only one method to get the necessary information about the
properties included in each event logged by the user of the application.

Type  Method  Description 

Public Property

This method receive name and value of
each property in an event, and store this

information to copy it in the array of
properties PropertyArray.

Table 8. Methods of the class Property 

 

3. Variables

  This class uses these two variables to store inside them the name and the value of a
property and them pass this information to the array of properties passed as parameter to the
object Library1, and then this stored information is used in the method LogProperties to
write it in the log file.

Access  Type  Name  Description 

Public TBuf<50> iName
Store the name of the property

to load it in the array
PropertyArray.

Public TBuf<50> iValue
Store the value of the property

to load it in the array
PropertyArray.

Table 9. Global variables of the class Property 

 

 

- The array RArray<Property> –

Even, not been a class, it is necessary to explain in a few lines what it is the task of this
array in the tool. When an event is logged, it will have a group of properties with
information about this event that the user wants to log, as important information related to
the event.

This group of properties will be stored with its name and value in an element of the
class Property, after that, we want to store this team of Property elements together to send it
to the library and log it. That is because an array of elements of the class Property will be

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 55 

created, and there, the list of properties will be stored and passes as parameter to the library
class that will log the event with its properties.

 In the library, this array, called PropertyArray, will be handle to extract each
property and its value and log the series of properties correctly. For example, to log an event
in the server this array has to contain at least the name of the device that is sending it and the
time stamp when the event occurs.

 

- The Application –

 

Once the programmer has the DLL library explained previously, it is necessary to
develop an application, which interact with the user and with the library, and this application
is going to make use of the methods implemented in the library to log events.

In one side, it has to create an interface to interact with the user, as for example to
show in the screen of the device a menu with the operations that can be done thanks to the
methods developed and also to communicate to the user messages about the execution of the
tool.

Also, this application has to create an object of the library to call the functions
included there and set what he wants from the library, it means which methods from the
library are needed to carry out the tasks that the user requires.

Moreover, this application has to include some properties that are necessary to the
interaction with the library, as the methods to provide the parameters that the functions of
the library need to be called. These basic methods are SetConfiguration and LogEvent; the
first one set if the data has to be logged locally, it means in the own mobile device, or in a
server, and in this case it has to create a connection with the appropriate server, it is also
allow to log in both places at the same time. The second method, LogEvent, is used to call
the needed functions of the library depending on the kind of configuration selected, and it
has another uses as set the URL with the IP address of the server or set the unique identifier
of the mobile device.

The application can also include another method to calculate the time necessary to log
events, in the server or locally. This is a good way to test the tool and evaluate the time
needed to log this data depending on the number of events logged and the number of
properties of these events.

Next, there are explained the five classes contained in this application; one of them
developed for our tool, and the other four classes are basics for every Symbian OS
application like the one implemented.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 56 

Class  Description 

CApplication1Engine

This class calls the functions includes in the library and set the
configuration to use, besides it receives an object of the class
CLibrary1 to use its methods. Here, it is implemented also some
methods to calculate the time necessary to log events in a local
file or in the server.

CApplication1App

It is the entry point for the operating system. It represents the
properties that are the same for every instance of the application.
This includes the information specified in the registration file and
other information, like the UID. Besides it creates the class
CApplication1Document.

CApplication1Document

It is constructed and returned by one of the functions of the class
CApplication1App mentioned above. It takes care of the data that
relates to the application and, it creates the interface between the
user and the application.

CApplication1AppUi
It is the “controller” of the application. The main task of this
class is to manage the views of the application, as to control the
size of the screen and the option’s menu.

CApplication1Container It is constructed by the class CApplication1AppUi and it handles
the user-interface components.

Table 10. Classes in the application 

For the development of this tool this application is called Application1 and this is the
reason because the classes on it starts with the same name, to identify that it depends to that
application, but if it would be necessary that names can be changed.

 

- CApplication1Engine Class –

This Symbian OS class was created as a part of the tool designed because it handles
the interaction with the library, and from this class an object of the library is created and its
methods are called.

 There are developed three functions on this class, one of them is used to define is the
user wants to log in the own device, in the server or in both places. Other of its methods is
who calls the library, firstly creating an object of the library and then calling the necessary
functions to log events using that object. And the last method is used as a evaluation tool, to
calculate how much time is needed to log events, locally or in the server, and varying

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 57 

variables like the number of events of the number of properties per event could be possible
to do a test of the tool.

1. Syntax of the class

This is the syntax of this class CApplication1Engine, and it is shown that this class
inherits from the class CBase, basic in Symbian OS for all classes instantiated on the heap.

class CApplication1Engine : public CBase

2. Constructors and Destructor

This class has a two-phase construction, so it implements the following methods to
create an object of this class in several steps and one more to destroy the created object after
its use.

To create an object of this class, firstly it is necessary to call the function NewL()
that will call NewLC() to continue the construction, from there is called the constructor for
performing the first stage construction CApplication1Engine() and the second stage
ConstructL().

 

Access  Type  Name  Description 

public CApplication1Engine NewL() Two-phased constructor.

public CApplication1Engine NewLC() Two-phased constructor.

private void ConstructL()
EPOC default constructor for

performing 2nd stage
construction.

private CApplication1Engine() Constructor for performing
1st stage construction.

public ~CApplication1Engine() Destructor.

Table 11. Constructors and Destructor of the class CApplication1Engine 

3. Methods

As it was explained above, this class implements three classes developed by the user
to give an application for the library designed.

The method SetConfiguration() set the configuration for the library, and for this task it
is necessary to set a variable called Configuration that represents if the library has to log

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 58 

events locally (when the value of Configuration is 1), to log in the server (when the value is
2) or in both places (when the value is 3).

The function LogEvent() create an object of the library and calls its methods, if the
user wants to log locally (according to the configuration previously set) this method will call
the library to create a new XML file on the device and log events there, also writing the
properties of the event that this function will send in an array called PropertyArray to the
library. If the user wanted to log in the server the connection will be created to the server,
indicating in this function its url, and sending also to the library the array with the properties
of an event.

Lastly, the method TimeStamp() takes from the system of the device the date and the
time in that moment, and returns it to the function who called, then this time will be use to
calculate the time wasted to log events calling it two times and displaying the difference in
microsecond between them. This is implemented as a tool to measure the capabilities of the
application designed.

Access  Type  Name  Description 

public void SetConfiguration()
Set the kind of configuration that the

user wants to use, logging in the
device or/and in the server.

public void LogEvent()
Creates an object of the library and

calls the functions on it, depending on
the configuration set.

private TTime TimeStamp()

Returns the exact date and time from
the device. It is called from

LogEvent() to test how much time it is
needed to log events and it could be a
good tool to evaluate the application.

Table 12. Methods of the class CApplication1Engine 

 

4. Global Variables of this class

 As this class CLibrary1 do many tasks to log events and sent data to the server, the
number of variables is high and some of them are used in several functions of the class, so
the following members are defined in the header file of the class for their use along the
different methods.

Access  Type  Name  Description 

public TInt NEvents The number of events that the
user wants to log.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 59 

public TInt Configuration The configuration that the user
wants to use to log events.

public TBool Close

This variable is set false
logging in the device to check
if the file were the events must

be log is already open. It is
useful when the user wants to
log several events at the same

time in a XML file.

public CLibrary1* EventLogger
This object of the library will

be referred with this name
when it is created.

Table 13. Global variables of the class CApplication1Engine 

- Application Class –

The application class is the point of entrance for the operating system, it is
constructed and returned by the NewApplication() function described below that belongs to
the Avkon class, that is part of the S60 UI framework.

This application class, in our code called CApplication1App class, represents the
properties of the application. This includes the information specified in the registration file,
and other information, as for example the application UID. Besides, it creates an object of
the Document class described below.

1. Syntax of the class

This is the syntax of this class CApplication1App, and it describes that this class is
derived from the class CAknApplication, contained in Avkon library, basic to create a series
S60 application.

class CApplication1App : public CAknApplication

2. Constructor

 

Access  Type  Name  Description 

public CApaApplication* NewApplication() Creates an application object.

Table 14. Constructor of the Application Class 

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 60 

3. Methods

This class implements only two basic functions for the creation of a Symbian OS
application, CreateDocumentL(), which is creates the document class explained below, and
AppDllUid(), which returns the UID of the application.

Access  Type  Method  Description 

private CApaDocument* CreateDocumentL()
Creates an object of the

CApplication1Document
class.

private TUid AppDllUid() Returns the UID of the
application.

Table 15. Methods of the Application class  

 

- Document Class –

The document class is constructed and returned by the function of the application
CreateDocumentL(), mentioned above. It represents the data that relates to a particular
instance of the application, it means that this class takes care of the data model. Besides, it
creates the application user interface, related to the next class explained, with the
implementation of a function called CreateAppUiL(), that it is inherited from the
document’s base class CEikDocument.

1. Syntax of the class

In the following syntax of this class is shown that its name on the application
designed is CApplication1Document and this class is inherited from CAknDocument, the
base class for the S60 application documents.

class CApplication1Document : public CAknDocument

2. Constructors and Destructor

This class has two-phase construction also as the class CApplication1Engine explained
before.

 

Access  Type  Name  Description 

public CApplication1Document* NewL() Two-phased
constructor.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 61 

public ~CApplication1Document() Destructor.

private CApplication1Document() EPOC default
constructor

private void ConstructL()
Performs the second

stage of the
constructor.

Table 16. Constructors and Destructor of the Document class  

3. Methods

This class implements only one method to, used to create an object of the class
application user interface explained below.

Access  Type  Method  Description 

private CEikAppUi* CreateAppUiL() Creates an object of the
application UI class.

Table 17. Methods in the Document class 

 

 

- Application User Interface Class –

The application UI class is constructed and returned by the CreateAppUiL() function
of the Document class, described above. Its main task is to create and initialize the views of
the application and also it handles the commands sent from the application’s graphical UI
controls. 

In the application designed, the user can do changes in the function
HandleCommandL() of this class, and, in this way, modify at its pleasure the options menu
created to, for example, integrate the configuration of the library explained above in this
menu and then will not be necessary to implement in the CApplication1Engine class the
function related to it.

1. Syntax of the class

The syntax of this class is the following, and its name on the application designed is
CApplication1AppUi and this class is inherited from CAknAppUi, the base class for the S60
application User Interface.

class CApplication1AppUi : public CAknAppUi

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 62 

2. Constructors and Destructor

This class has only one constructor and a destructor. Besides, this constructor creates
an object of the Container class that follows.

Access  Type  Name  Description 

private void ConstructL() EPOC default constructor.

public ~CApplication1AppUi() Destructor.

Table 18. Constructor and Destructor of the Application UI class  

3. Methods

This class contains three methods, the most important for the development of our
application is the HandleCommandL() function because there it can be change the options
menu that appears when the application is open, and it can be modified by the programmer.

In the application developed, Application1, the menu has been change to set if the
events can be logged on the device, on the server or in both places, as an alternative to
modify the function Configuration of the class CApplication1Engine with the preferred
configuration.

Access  Type  Method  Description 

private void DynInitMenuPaneL()

The EIKON framework
calls this function just

before it displays a menu
panel.

private void HandleCommandL()
It is inherited from

CEikAppUi class and takes
care of command handling.

private TKeyResponse HandleKeyEventL()
It is inherited from

CEikAppUi class and
handles key events.

Table 19. Methods of the Application UI class 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 63 

4. Variables

In this class there is a global variable of the class used to refer to an object of the
container class created by the Construct() function of the Application UI class.

Access  Type  Name  Description 

private CApplication1Container* iAppContainer This variable is an object of
the Container class.

Table 20. Variables of the Application UI class 

 

 

- Class CApplication1AppContainer -

The container class is created by the ConstructL() function of the application user
interface class, and it is used for handling the UI components. It has the control of the
graphical user interface (GUI). Besides, this class implements the main window and acts as a
container for the other application controls.

1. Syntax of the class

The syntax of this class is the following, and its name on the application designed is
CApplication1AppUi and this class is derived from CCoeControl, the basic control base
class of the UI Control Framework.

class CApplication1Container : public CCoeControl,
MCoeControlObserver

2. Constructors and Destructor

This container class has only one constructor and a destructor.

Access  Type  Name  Description 

public void ConstructL() EPOC default constructor.

public ~CApplication1Container() Destructor.

Table 21. Constructor and Destructor of the Container class 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 64 

3. Methods

In the application designed, this class implements five methods related to control the
graphical view of the application for the user.

Access  Type  Method  Description 

private void SizeChanged()
Called by framework when the
view size and position are
changed.

private TInt CountComponentControls() It tells how many controls to
draw.

private CCoeControl* ComponentControl() This method controls the Draw()
function.

private void Draw() It is the actual draw operation.

private void HandleControlEventL()

It is inherited from
MCoeControlObserver class and
it acts upon the changes in the
hosted control's state.

Table 22. Methods of the Container class 

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 65 

 

5 IMPLEMENTATION
 

In this chapter, it is presented the data collector tool since the point of view of the most
important steps of the design explained above, so this time it is shown how exactly the tool
prepare the data to be log, how it is log in the device and how it is log in the server,
explaining also the connexion with it to send HTTP POST request.

 

5.1 DATA COLLECTOR TOOL FOR SYMBIAN PHONES
 

This data collector tool has been created for using it in Symbian phones, so as it was
explained in the technology chapter, the language used for the implementation is Symbian
C++, making use of the Carbide.c++ program to carry out this implementation. In the
following pages, the main functions implemented are presented and in some cases also some
pieces of the code are included so for that people do not familiarize with this language it
could be difficult to understand but each sentence is explained trying to make easier the task
of the reader.

 

5.1.1 Prepare the data to be log

One of the most important parts of this tool is to store the data to log correctly to send
it to the logging methods of the library. If the implementation of this task is not good, the
rest of the work would not be worthy, so it is necessary to pay attention on the development
of this part of the logging process.

 To store this data, that it is composed by a list of properties and the value that takes
each one of them, it was defined a class called Property with two fields of 50 characters each
one of them, one for the name of the property and the other one for its value. In the
developing process it was decided to store the information in this way because it is not very
complicated, and it allows keeping together the name and the value of the property in the
same variable. Besides, the size of this fields were set to a string of 50 characters because it
was considered big enough, and we avoid to keep so many resources for that, because
probably it is unnecessary.

Then, in the code of each event to log, it is created an element of the Property class for
each property that has to be logged, and there with are going to add the name and the value
to store as follows:

 Property i (_L("actionEvent"),_L("Edit File"));

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 66 

These properties will be stored in a list of properties, inside an array of elements of the
Property class declared as:

RArray<Property> PropertyArray;

The number of properties is not set, so the user can add as much as he wants to the
array and send it to the logger method in the library that will extract the information. The
elements are stored in the array as follows:

 User::LeaveIfError(PropertyArray.Append((Property)i));

 What it is said there, it is that the element named i from the class Property, will be
append to the array called PropertyArray and if any problem happens during this operation,
the function will leave.

 

5.1.2 Log events in the own device
 

When the user selects to log the data locally, in the own device that is using, firstly an
object of the library will be created, and after that the code from the application will call the
methods of library with that object created, as much times as it needs.

In the following pages, there are explained the most important steps to log events in
the own device, including some lines of code that come from the methods that carry out
these tasks.

­ Create the XML file – 

Then, the following step is to create that file where the events are going to be logged.
It is just necessary to connect to the file server, and then to create a file in writing mode and,
it is useful, to add at the beginning some data to describe the content of the document, like
the encoding type, the application´s ID or the device´s ID.

Besides, the way to naming the file in out tool, it is calling a function that returns the
exact date and time when the file was created, and in this way the user can order the files
that he will create easily.

Below, it is shown some pieces of the CreateFile() method that includes the most
relevant sentences to take a look about how the code carry out these tasks.

EXPORT_C void CLibrary1::CreateFile()
 {
 // Connect to the file server
 fsSession.Connect();
 ...
 // Set the name of the file XML with the time when was created
 TBuf<40> fileName = GetDateTime();
 file.Create(fsSession,fileName,EFileWrite);

... // Write the first lines with useful information
 }

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 67 

­ Write data on the file – 

Once the file is created, the application calls the library to use the method
LogProperties() that need as parameter the array with properties explained above.

As it can be logged several events in the same log file, it is necessary to identify each
one of then, that is why before starting to write the properties, the time is written, and also,
this is a good tool for the user to know which event occur in each moment.

After that the function will extract the property name and the property value from the
array using a for sentence that will go through all of it, until the last element because it will
count how many elements the array has thanks to the function Count() provided by the
platform for the management of array information.

EXPORT_C void CLibrary1::LogProperties(RArray<Property>* PropertyArray)
 {
 ... TimeEvent();
 ... //Open the event
 file.Write(_L8("\r\n\t<event time=\""));
 ...
 file.Write(_L8("\r\n\t\t<properties>"));
 for (TInt i=0;i<PropertyArray->Count();i++) // Browse the array
 {
 ... //Print property Name extrating the info from the array
 myName.Format(_L("%S"),&(*PropertyArray)[i].iName);
 TPtrC8 ptrC8Name((TUint8*)myName.Ptr(), myName.Size());
 file.Write(_L8("\r\n\t\t\t<prop name=\""));
 file.Write(ptrC8Name);
 file.Write(_L8("\">"));
 ... //In the same way print the value and close property
 file.Write(_L8("</prop>"));
 }
 ... // Close properties and close event
 }

When all properties of the event are written, it will close it and if the user just select
to log one event the file will be close as follows, but if he wants to log more events in the
same file it could be done and he just need to call again to the LogProperties() function from
the application sending a new array of properties.

­ Close the file ­ 

The user can log as much events as he wants in the same XML file, and after the last
one, it is necessary to call the FinishFile() method to close correctly the document. If the
application forgets to call this function, the file will be saved, but the log file will not be
finished with the sentence </logfile> that indicate in XML that this logfile is finished, and
the connection with the file server will not be closed neither.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 68 

 

Figure 26. XML file created correctly 

 

 

If the file was closed correctly, it can be opened with, for example, the Internet
Explorer, to check that everything was written fine and all the labels were closed (Figure
26). If some label was not closed or some invalid character was written, when we will try to
open it with the Internet Explorer it will appear a note to tell that something was wrong on
the file (Figure 27). The file can be opened with other programs, like the Notepad but this is
not going to tell us if there is any mistake on it, but the information can be read.

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 69 

 
Figure 27. XML file wrong created 

 

5.1.3 Log events in the server
 

When the user selects to log the data in the server, firstly an object of the library will
be created, and after that the code from the application will call the methods of library with
that created object.

Besides, from the application is necessary to send additional information, not only the
array of properties. It is necessary to indicate the URL of the server where the data has to be
logged; if the user wants to log a file, as for example, a jpeg image, it has to be indicated
also, and for that it is needed the name of the file to send, including its path.

Then, it starts to work in the methods of the library to send the data to the server to be
logged, and in the following pages, there are explained the most important parts of this
process.

­  Open a session and set up connection – 

 Firstly, it is needed to open a HTTP session where it is going to be open an Internet
access point, and a socket server to start the connection to Internet through it. Then the
preferences of this connection are defined, as the ID of the access point or the kind of dialog
preferred. With this preferences set, the connection starts normally.

Once this connection is open, when the data will be ready is only necessary to send it
to the preferred server through this connection opened.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 70 

void CLibrary1::SetupConnectionL()
 {
 ... //Open socket server and start the connection
 User::LeaveIfError(iSocketServ.Connect());
 User::LeaveIfError(iConnection.Open(iSocketServ));

... // Define connection preferences
 connectPref.SetIapId(m_Iap);
 connectPref.SetDialogPreference(ECommDbDialogPrefDoNotPrompt);

... // Start a synchronous connection
User::LeaveIfError(iConnection.Start(connectPref));
//set the sessions connection info to use our socket server and
connection

 ...
 }

­  Prepare data for the POST request –  

 The data cannot be sent to the server as series of parameters, one after the other, it
needs to conform some specifications about the way to post this data to be understand and
classified when it arrives to the server.

 In the tool implemented, the request method used by the application is a POST
request. In this kind of request, the each parameter of data to send has to be delimited by a
boundary. For example, if the user wants to send three properties of an event to the server,
first it is necessary to put the boundary, the content disposition that will be data, the name of
the first property between inverted commas, two line breaks and then the value of this
property; after that, to send the next property it has to follow the same schema, the
boundary, the content disposition, the name, etc. At the end of all the data to be send it is
necessary to put another boundary following by the characters “--” to indicate to the server
that it is the last information.

 An example of the upload format explained is the following:

EXPORT_C void CLibrary1::ConvertDatatoSend(...)
 {

... ...

... //The variable iPostDataPtr is created to append there all the
// data, because it is want we are going to send to the server

 iPostDataPtr.Append("\r\n");
 // The properties content in the array
 for (TInt i=0;i<PropertyArray->Count();i++)
 {
 iPostDataPtr.Append("--AaB03x"); //The boundary
 iPostDataPtr.Append("\r\n");
 iPostDataPtr.Append("Content-Disposition:form-data;name=\"");
 ... // Extract from the array the name
 iPostDataPtr.Append(myNameProp);
 iPostDataPtr.Append("\"");
 iPostDataPtr.Append("\r\n");
 iPostDataPtr.Append("\r\n");
 ... //Extract the value from the array
 iPostDataPtr.Append(myValueProp);
 iPostDataPtr.Append("\r\n");
 }

... ... //If a picture has to be send

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 71 

if (File)
{
iPostDataPtr.Append(“--AaB03x”);

 iPostDataPtr.Append("\r\n");
iPostDataPtr.Append("Content-Disposition:form-data;
name=\"file[]\"; filename=\"");

 iPostDataPtr.Append(iFileName);
 iPostDataPtr.Append("\"");
 iPostDataPtr.Append("\r\n");
 iPostDataPtr.Append("Content-Type:application/octet-stream");
 iPostDataPtr.Append("\r\n");
 iPostDataPtr.Append("Content-Transfer-Encoding: binary");
 iPostDataPtr.Append("\r\n");
 iPostDataPtr.Append("\r\n");

iPostDataPtr.Append(aPtr); //the file in binary
 iPostDataPtr.Append("\r\n");

} ... //End of the format for the picture
... ... //Indicate that it is the last data
iPostDataPtr.Append("--AaB03x--");

 iPostDataPtr.Append("\r\n");
... ...

 }

It is important to take in consideration, that every event sent to the server has to
include between its properties two important parameters, one of them is the unique ID of the
device that is sending the information, identified in the server by the name “device” and the
timestamp of the event, identified as “timeStamp”. In a transmission to the server, if these
two properties do not appear, the event will not be logged. To avoid this situation, the library
designed will send always these two parameters for every event to log in the library. The
identifier of the device will be the IMEI code that every mobile phone has, and the time will
be take from the system with the function TimeEvent() designed, including from year to
millisecond to avoid the situation of several event with the same time, it is supposed thanks
to the test done that a precision of millisecond is enough to differ between events.

 

 ­ The connection to the server and sending the data by POST method –  

 

 When the data is ready to be sent, a transaction with the method HTTP POST is
open, through the connection created previously, and this transaction is created in the URI
indicated, that correspond to the server URL selected to log the data in.

 Besides, it is needed to set the headers request for this transaction, with the accepted
content type and other characteristics. After that the class will be set as a data supplier to
indicate that the methods from this MHTTPDataSupplier class, as the OverallDazaSize(),
GetNextPartData(), Reset() and ReleaseData() functions, must be called by the framework to
send the body data already prepared to be sent.

This operations are related to the function IssueHTTPPostL() show below with its
most important parts for this process:

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 72 

 EXPORT_C void CLibrary1::IssueHTTPPostL(... ...)
 {

 // Get request method string for HTTP POST

 RStringF method = iSession.StringPool().StringF(HTTP::EPOST,
 RHTTPSession::GetTable());

// Open transaction with previous method and parsed uri.
iTransaction = iSession.OpenTransactionL(uri, *this, method);
// Set headers for request with user agent, accepted content type
// and body's content type.

 RHTTPHeaders hdr = iTransaction.Request().GetHeaderCollection();
 SetHeaderL(hdr, HTTP::EUserAgent, KUserAgent);
 SetHeaderL(hdr, HTTP::EAccept, KAccept);
 SetHeaderL(hdr, HTTP::EContentType, KPostContentType);

 // Set this class as a data supplier. Inherited MHTTPDataSupplier
 // methods are called when framework needs to send body data.

 MHTTPDataSupplier* dataSupplier = this;
 iTransaction.Request().SetBody(*dataSupplier);

    }

 

Besides the POST method proposed, there is another possibility to implement this
sending of data, the PUT method. The fundamental difference between POST and PUT
requests is the meaning of the Request-URI. The URI in a POST request identifies the
resource that will handle the enclosed entity. That resource might be a data-accepting
process, a gateway to some other protocol, or a separate entity that accepts annotations. In
contrast, the URI in a PUT request identifies the entity enclosed with the request, the user
agent knows what URI is intended and the server MUST NOT attempt to apply the request
to some other resource. If the server desires that the request be applied to a different URI
[40].

 

In the following Figure 28, it is represented the information received from the server
where the data has been sent from the mobile phone. In this example, the IP address
150.140.188.197 correspond to the device used, and the server has received several requests
from this address using the method POST, and here it is also indicated the number of bytes
received by the server, that vary depending on the number of data logged from an event. The
code number 200 indicates that the information arrived to the server correctly.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 73 

   
Figure 28.  View of the requests received by the server 

 

 

As it was explained before, the data sent to the server can vary in each event, and the
kind of properties to log can be as varied as the user wants, it means that the name of the
properties that the server can store is not set. Although, it will recognize the most common
ones as device, time, actionEvent or file_name; these ones will be stored in its own database
and for the rest of the properties there is a common database that is shown below, with some
of the properties received, in the Figure 29 are represented the ones sent by the Symbian
phone using the library developed.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 74 

 
Figure 29. View of the database of properties in the server 

 

5.1.4 Measure the time spent logging events

In the application created, it has been developed also a method to measure the time
spent logging data, in the server side or locally, and with the combination of number of
events, properties, etc preferred by the user.

This function has been really useful to test the tool as it will be explained in the
evaluation section, because to know exactly, with a precision of milliseconds, how much
time needs an event to be log is very important to analyse if the tool is enough fast for the
work that has to realise.

To implement this TimeStamp() method, it has been used one of the function of the
RTimer class provided by the platform, called HomeTime() that return the time of the
system in that moment and then, the result will be stored in a TTime variable that will be
return to the code who called. Therefore, this method will be called two times, one before
starting to log events and another one just after the library finished to log the events; and
then, the difference between these two variables will be calculated and shown in the screen.
Also, if there are several events, the medium time per event will be shown.

It was decided to use this function from the RTimer class and not another way to
measure the time, because it is very easy to use and understand the result, providing also a
function MicroSecondsFrom() to calculate the difference between the values of time
received.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 75 

6 EVALUATION
 

6.1 INTRODUCTION

For the evaluation of this tool, there were used two different methods; one of them was
to provide the library designed to a developer with a document explaining the instructions
step by step to add the data collector tool to an application already working, and test it,
recording some videos of the process and giving us feedback about it.

The other way to evaluate the data collector tool was testing the number of events and
properties that it can process, and analysing the results obtained, especially about the time
necessary to carry out these tasks, getting an idea of the speed of the tool.

6.2 EVALUATION MADE BY A DEVELOPER
 

6.2.1 Method
 

In this project, the method used to evaluate the data collector tool designed for
Symbian phones, is the Developer Feedback, that is one of the methods of peer review.

Peer review methods include inspections, walkthroughs, peer deskchecks, and other
similar activities [36].

This method is supported for Karl Wiegers, who says; “Peer review -- an activity in
which people other than the author of a software deliverable examine it for defects and
improvement opportunities -- is one of the most powerful software quality tools available”.
He said too; “After experiencing the benefits of peer reviews for nearly fifteen years, I
would never work in a team that did not perform them.”

More authors like, for example, McConnell, give many evidences for the efficiency of
code reviews in Code Complete. Saying: “software testing alone has limited effectiveness --
the average defect detection rate is only 25 percent for unit testing, 35 percent for function
testing, and 45 percent for integration testing. In contrast, the average effectiveness of
design and code inspections is 55 and 60 percent” [37].

Some cases have been studied of peer review technique, and the results have been [37]:

⇒ In a software-maintenance organization, 55 percent of one-line maintenance
changes were in error before code reviews were introduced. After reviews were
introduced, only 2 percent of the changes were in error. When all changes were
considered, 95 percent were correct the first time after reviews were introduced.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 76 

Before reviews were introduced, fewer than 20 percent were correct the first
time.

⇒ In a group of 11 programs developed by the same group of people, the first five
were developed without reviews and the other six were developed with reviews.
After all, the programs were released to production; the first five ones had an
average of 4.5 errors per 100 lines of code. The other six had an average of only
0.82 errors per 100. Reviews cut the errors by over 80 percent.

⇒ The Aetna Insurance Company found 82 percent of the errors in a program by
using inspections and was able to decrease its development resources by 20
percent.

⇒ A study of an organization at AT&T with more than 200 people reported a 14
percent increase in productivity and a 90 percent decrease in defects after the
organization introduced reviews.

⇒ Jet Propulsion Laboratories estimates that it saves about $25,000 per inspection
by finding and fixing defects at an early stage.

 

 

With all this positive data about this method of evaluation, it was decided that this
technique is really useful for the situation of a new application tool ready to start working;
so, it was used with a developer that agreed to study the data collector tool and give some
feedback about it, besides showing us the process followed thanks to a recording of the steps
followed by him.

The videos recorded by the developer were used lately in the explanation of the steps
followed by the developer to add the library to an application and start using it. The final
time to do this task, following the instructions provided to him last around 15 minutes. And
then, another 5-10 minutes of tests with different capabilities of the tool.

To make easier the understanding of the steps followed, there is shown in these pages
the procedure that they are doing each time, and thanks to this method the tool can be
evaluated. The videos are attached to this report in a special DVD with all the information
necessary to understand it, and here there are presented only some screenshots with the steps
to add the tool designed in another application, which needs to be log.

 

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 77 

 

6.2.2 Data Analysis
 

Firstly, a document was prepared to provide to the developers as an explanation of the
instruction they have to follow to add the library designed to a application already working,
it represents all the information about the procedure that they received some days before to
read and understand it with calm.

These instructions are shown in the following pages:

INSTRUCTIONS OF USE 

‐ Firstly, the project with the library has to be added to the same workspace were the application 
that the user wants to log is, and import it to the carbide.c++ program. 

‐ Add to the header file where the application's functions are included the reference to the library
#include "Library1.h. Also, link against this library editing the mmp file of the project that can 
be found in the folder Group, looking for the library LIBRARY1.LIB and save with the new changes. 

‐  Be sure that this header file includes also the following libraries provided by the platform: 

 #include <e32std.h> // Default included when a project is create 
 #include <e32base.h> // Default included when a project is create 
 #include <eikenv.h> //Necessary to receive information in the screen from the program. 
If is not included, link against its library also in the previous mmp. file, the name of its library is avkon.lib. 

‐ Create in the header file of the application the following variables: 

• A public variable type TInt called Configuration, to send the type of configuration that 
the user wants to the library.  

• A public variable type TBool called Close, to be used to check if an object of the library 
has been already created.  

• A public variable type TInt called NEvents, to take the account of the number of events 
to log. 

• A public  variable  that will  store an object of  the  library.    The  syntax  is: CLibrary1*
EventLogger; Where EventLogger is the name that will be used in the application to 
refer the object of the library.

‐ Add the collection of properties to each event that you want to log, or we can suppose that each 
function already has it, and these properties have to be stored with the name of the property and 
its value in a class Property already defined in the library, so it is just necessary to write the name 
and value as the following example: 

 Property a (_L("property_name"),_L("property_value"));

And only change the bold variables, the name of the property (for example, instead of a, continue 
the alphabet b c d…), and the name of the property and its value, for example property_name could 
be Username and property_value could be Patricia. Note: The name of the property and its value 
are limited to a string of 50 characters. 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 78 

‐ Now, store this information in an array to send it to the library. It will be declared in each function 
to be logged, and the type of the array is RArray, defined as follows:  

RArray<Property> PropertyArray; //PropertyArray is the name gave to the array 

To include the properties in the array, just after adding the name and the value of the property in a 
class Property, as it was explained above, use the following expression:  

User::LeaveIfError(PropertyArray.Append((Property)a));

‐  Then  add  the  following  two  functions  to  the  class  that  contains  the  application,  because  these 
functions implement the creation of an object of the library and call the methods from the library.

void CApplication_TestEngine::SetConfiguration(TInt NEvent)
 {
 NEvents=NEvent;

//Set the appropriate configuration to 1 if the user wants to log the events locally, to 2 if he 
//wants to log it in the server and 3 if he wants to log it in both places. 

 Configuration=3;
 Close=ETrue;

}

void CApplication_TestEngine::LogEvents(RArray<Property> PropertyArray)
 {
 if(Close) //If the object is not created yet 
 {
 //Create an object of the library with the variable EventLogger defined in the library
 EventLogger = CLibrary1::NewL(Configuration);
 Close=EFalse; //To indicate that the object is created
 }
 if (Configuration==2 || Configuration==3) // Log in the server
 {
 if (NEvents==1) //Only log one event on the library, if there are several, only the last one.
 {
 //Local variables
 HBufC8 *postbuf = HBufC8::NewLC(512);
 HBufC8 *postbuf2 = HBufC8::NewLC(512);
 TBuf<256> iUri;
 TBool File; //Use to set if the user wants to send a file to server or not 

 iUri.Zero(); //Initialise iUri to zero.

//Add the url of the server where you have to send the data
iUri.Copy(_L("http://150.140.188.170/formhandler.php"));
postbuf->Des().Zero();
postbuf->Des().Append(iUri); //Prepare the url  in this format to send it to the library
File=EFalse; //No file

//This part must be added to the code only if the user wants to send a file to the server if not, 
//comment it 
File=ETrue; //File
//Add the name of the file to the array of properties to log the file in the server as file_name.  
// In this example the file to send is Audrey.jpeg 
Property y (_L("file_name"),_L("audrey.jpeg"));
User::LeaveIfError(PropertyArray.Append((Property)y));
TBuf<256> iFileNameToSend;
iFileNameToSend.Zero();//Initialise iFileName to zero.
//Add here the name of the file with the path were it is stored. 
iFileNameToSend.Copy(_L("C:\\image\\audrey.jpeg")); //The file to

send

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 79 

postbuf2->Des().Zero();
postbuf2->Des().Append(iFileNameToSend); //Format to send it to the library

 //End of the necessary code to send a file

 //It is necessary to send the device ID to the server to log the data, add it to the array 

//The IMEI is the unique identifier of a device, so use it as ID here.  
//Note: The IMEI can be find easily in the documentation of your device. 

 Property x (_L("device"),_L("353269015116852"));
 User::LeaveIfError(PropertyArray.Append((Property)x));

//Call the function ConvertDatatoSend from the library to log the event 
 EventLogger->ConvertDatatoSend(&PropertyArray, postbuf->Des(),
postbuf2->Des(), File);
 _LIT(KTextPrueba, "The event has been logged ");
 _LIT(KTextPrueba2, "in the server ");
 CEikonEnv::InfoWinL(KTextPrueba,KTextPrueba2);
 }
 }
 if (Configuration==1 || Configuration==3) // Log in the device
 {
 //Send to the function in the library that Edit the XML file
 EventLogger->LogProperties(&PropertyArray);

 if (NEvents==1) //If it is the last event
 {
//Finish the file that we are editing to log events when the last one is logged. 
 EventLogger->FinishFile();
 _LIT(KTextPrueba3, "The event has been logged ");
 _LIT(KTextPrueba4, "locally");
 CEikonEnv::InfoWinL(KTextPrueba3,KTextPrueba4);
 }
 }
 NEvents=NEvents-1;
 //Delete the array
 PropertyArray.Close();
 }

‐ Add also the declaration of these functions in the header file of this class, and declare it as public. 
The functions must be declared as follows: 

 void SetConfiguration(TInt NEvent);
 void LogEvents(RArray<Property> PropertyArray);

‐ Finally, call  the SetConfiguration()  function and then, LogEvents()  function from each event that 
wants  to  be  log  after  storing  the  properties  of  the  event  in  the  array,  and  pass  this  array  as 
parameter to the function. The sentences to call these functions are:  

 SetConfiguration(NEvent); 

LogEvents(PropertyArray); 

‐ Now, the user can start logging events thanks to the library. 

 

 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 80 

After following these instructions to add the tool to an application used to create, edit
and delete files, while recording all the steps; the developer had to give some feedback about
this process, focusing in the list of quality dimensions show below, that was received at the
beginning of the creation process to focus on in for the development of the tool. This list of
dimensions is:

- Speed of execution

- Flexibility

- Brevity of code

- Fullness of features

- Time spent coding

- Robustness

The main goals during the development have been the flexibility, the quantity of
features and the speed of execution, followed by the rest of parameters shown. It can be
remarked that some of these parameters are kind of contradictory as, for example, robustness
and flexibility or the fullness of features and the time spent coding.

In the following sections there are explained this steps of the evaluation done by the
developer to test the data collector tool designed.

 

6.2.3 Video recorded by the developer
 

In this section there are attached some screenshots taken from the video recorder by
the developer, that will help to the reader to understand the process followed to add the data
collector tool to an application already existing.

In this first Figure 30, it is shown the application that has been used for the test,
imported to the workspace of application where the developer is working with.

Figure 30. Screenshot with the application imported to the program 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 81 

 Then, the library is referred in the application to allow its use on it, and call its
functions. This step is shown in the

Figure 31. Screenshot of the Library referred in the header file of the application 

After that, it is necessary to link agains this library also, from the mmp file of the
application, where it has to be added the Library.lib file:

Figure 32. Screenshot of adding the library to the mmp file 

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 82 

 After that, the code correspondent to the functions SetConfiguration() and
LogProperties(), necessaries to call the method of the library are included in the application,
below the functions that are going to be log.

Figure 33. Screenshot of the application once the functions are included 

 Also, there is important for the operation that these functions are included its
definition in the header file of this application:

Figure 34. Screenshot of defining functions in header file 

 To continue the process, the developer has to add the name and value of all
properties of the event that has to be logged in the array of properties PropertyArray to send
it to the library, as it is shown in the Figure 35. Also, it is representing the sentence to call
the functions SetConfiguration() and LogEvents() that interact with the library.

!

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 83 

Figure 35. Screenshot of adding properties of the event to the array 

 

Until now, all the elements has been added to the application, so in this moment the
project has to be built, and if there is not any problem, the emulator can be used to run the
application.

Figure 36. Building the application 

 

 
Figure 37. Running the application 

 

 Then, from the menu of the program, the event to do and log it is selected and when
it is logged a message appear in the screen to inform the user (Figure 38).

 

 

!

! !

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 84 

 
Figure 38. Message of event logged succesfully 

 

6.2.4 Feedback from the developer
 

The main point for this feedback from the developer is to fulfill the list of quality
dimensions presented next to the instructions with his objective mark due to the test realized
with the tool. The evaluation should be with a scale from 1 to 5, been the 5 mark the best
one.

After that, as a good feedback, it includes a list to positive and negative characteristic
about the tool that should be taken in consideration. And it was already discussed between
the developer of the tool and the developer doing the evaluation, to get a list of face-to-face
impressions about the point of view of both of them.

- Evaluation of the list of quality dimensions provided -

After the testing, the evaluator fulfill this list of dimensions (in a scale 1 to 5) as
follows:

Speed of execution: 4 (the information obtained about the time spent logging events, in the
device as in the server, is satisfactory but it cannot be compared with other tools carrying out
the same tasks)

Flexibility: 4 (the number of properties to log is big, and include also the time when an event
is logged, and it can include the file logging in server, but it do not have the option to take a
screenshot)

!

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 85 

Brevity of code: 2 (the code to add it is more than the expected, but the modifications on the
code are easy to do)

Fullness of features: 3 (the library has a good variety of features, and a versatile
configuration but it is necessary to reload the application each time the configuration is
changed)

Robustness: 3 (problems of network bottleneck)

Time spent coding: 1 (the time coding was more than expected but primarily due to
unfamiliarity with Carbide.c++)

- Positive characteristics -

• Support of local logging of the data, not only in the server side.

• Good points of flexibility that allows logging a single event with variable number
of properties and optionally a file. Also could be logged several events at the same
time in the same log file on the device.

• The events logged include a time stamp of the moment when were logged, with
milliseconds accuracy, that make easier the search of an event by time, and also
could be useful for another applications.

- Negative characteristics -

• It can be useful the implementation of the singleton pattern of design instead of
creating a global variable to control if an object of the library has been already
created.

• It will be easier to add the library to an existing application to do more calls to
methods in the library, instead of including functions in the application. It would
seem tidier.

• Network failures will probably finish with data loss or wasted of time in the
execution.

• Changes in configuration of use of the library or server used to log requires rebuilt
of the application using the library. An external configuration file would be more
acceptable.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 86 

 

6.3 PERFORMANCE EVALUATION
 

6.3.1 Method
 

The method used in this case consists on carry out a group of tests with the tool
designed, implemented in an application, and in this different tests a group of parameters
were changed, as logging in the own device or in the server, different number of events
logged, different number of properties per event, and including or not a file between this
data to be logged.

In these different tests, it was taken in consideration the time necessary to log the data,
and with all the time obtained, there was prepared some tables and graphs, that were
analysed to create an idea to the reader of the speed and capability of the application.

 

6.3.2 Data Analysis and presentation of results
 

The first experiments done logging events locally, in the own device, and we were
changing the number of events to log and the number of properties per event. Starting with a
small number of properties and increasing the number of events, because we were interested
in testing the capability of events to log in a file, after that the number of properties was
incremented also, but especially tests were focus in number of events to log.

As it is shown in the Figure 39, the tool was tested for a number of events of 100, and
the tool needed approximately 280 millisecond to log all of them; if the number of properties
is double, 6 properties per event, this time increased to around 485 milliseconds, and for a
number of 12 properties this time is increased until 812 milliseconds.

If the number of events to log is bigger, these numbers are bigger also. Logging 500
events, the tool need around 1 second to achieve this task with the smaller number of
properties, if the properties increase until for example 12 properties per event, the tool needs
around 3 second to log all the data. Increasing the number of events to 1000, for a small
number of properties will last 2 seconds to log it, and with a bigger number of properties this
number will be increased proportionately as in the other experiments.

This results let us interpret that the time needed for the tool to create a new file were
the data is logged is reduce, compared with the time necessary to write on it the information.
Because if we take a look at the graphics, each time the number of properties is doubled, the
time necessary to complete the operation is almost doubles too. So we can deduced that
most of the time for this data logging is spent to write on the file, not to create it and finish
it.

Besides, it was considered not necessary to show more results for this operation
because it was checked that these numbers continuing increasing in the same way if the

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 87 

number of events is increased and the number of properties is bigger too. Moreover, the
system does not crash if the number of events is too big, the only problem is that, for
example, with a number of 100000 events to log it will need around 2 minutes to complete
the operation and the size of the file created will be around 20MB, and it is considered too
heavy for a mobile phone memory.

 
Figure 39. Time spent logging events locally 

Next, the experiments were done logging in the server side. In this case, the
parameters changed were the number of properties to log in an event and the number of files
logged. The number of events is fixed to one event because per time it is only possible to log
one event in the server as the library is designed; in contrast, the number of properties can be
bigger so it was decided to do some test increasing the number of properties to check what
happens, and then include also pictures in the events to log.

In the first tests, it was send to the server only properties, starting from a small number
and increasing it until one hundred properties, for higher values the system crashes because
the tool was implemented to send to the server a limited size content of properties, set in one
hundred properties with 50 characters for the name and 50 characters for its value.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 88 

 
Figure 40. Time spent logging events in the server 

 

 

 If we analyze this results, for example, in the first situation, were the data to log
contains only properties, it can be seen in the Figure 40, that the difference between logging
10 or 100 properties is not very high, in the order of 200 milliseconds, and the complete
operation lasts about 4 seconds; therefore, it can be deduced that the most of the time is
spent in the other operations done to log in the server, most probably this time is spent
creating a connection and sending this data to the server through Internet, because in this
situation the time wasted does not depend only in the system designed, it also depends in the
traffic and the capabilities of the network.

 Including also files in the transaction, the time spent to log is incremented but
proportionately, so the conclusion explained in the previous paragraph makes sense, still
needing to send also pictures that will increase the traffic on the network and increase the
time of the logging because of the size of this files.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 89 

 

7 CONCLUSION

In the present moment, the spreading of the new technologies around the world is a
really important source of business, and each day more and more programs, devices and
applications are launch to the market. In this context, the tools related to test new programs
gathering data are been developed quickly as a good opportunity to discover fails and
negative points of new applications created, and in this way, fix this problems on the first
stages of the creating process, in order to get good programs working correctly in less time
and getting a better result between costumers.

 Besides, it is necessary to take in consideration, that this big spreading of
technologies causes a lot of new users, usually not accustomed to treat with this devices, so
it is needed to make the new application easy to use, in order to facilitate the understanding
of the operation mode of them. In this situation, it is when appear the Human-Computer
Interaction field, trying analyse the behaviour of different groups of people, and in this way,
get applications well accepted between common people, not only between specialized
person on the subject.

Analyzing the techniques to improve applications designed and starting to be
developed, the method of Usability Evaluation of the Data Collected is one of the most
popular between analyzers, due to its number of possibilities and its big amount of
advantages of use. For this reason, this is a very active field of work nowadays, and several
researches and studies about it are in the market.

Between all the technologies existing these days in the market to gather data and send
it to another entity, as a server, to be stored in; we realised that there is not an application
valid for every system, because it would have to include a big amount of features and
requirements for all the programming languages and platform existing. So, for the
development of this project it was selected the Symbian Operating System for mobile
devices, due to its huge expansion in the world nowadays.

The application of a data collector tool for Symbian phones proposed, it is designed
and implemented, and it accomplished the specifications to collect data needed for this
project that the Human-Computer Interaction group is developing. But, as it has been
remarked on the evaluation done to this tool, it can be improved, fixing the fails in the
system that the evaluator has shown and trying to solve the negative points found. A good
idea would also to test it between a bigger number of people, to even improve more the Data
Collector tool.

Besides, the use of this tool for the system that proposed the initial requirements, once
has been implemented and it is working correctly, it could be useful to open it for more
applications that wants to log data from Symbian phones, and thereby the market for the tool
would be extended for more applications. Even, as future work, it will be great the
possibility to implement this tool to other devices, that use Symbian OS as operating system.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 90 

As a future work in this field, it would be a good idea to solve the negative points of
the tool marked by the developer during its evaluation, as making easier the work to add the
library to an application already working in order to facilitate it for the future users of the
library, or the modification of the code to add the singleton pattern of design to control the
creation of objects of the library created by the application instead of control it by a variable.

On the other hand, the Data Collector tool explained in this report could be modified,
as also the Data Collector for Pocket PCs created by Raúl Esgueva, in order to standardize
its interfaces to communicate with the programmer, because the characteristics of both of
them at the moment are not exactly similar, due to the difference on time when these tools
were developed and the difference between the programming languages used. But as a
currently good point, both tools use the same interface with the server, so the same server
can receive logging data from these devices.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 91 

8 APPENDIXES
 

8.1 APPENDIX A: EVALUATION WITH SLOCCOUNT
BASED IN COCOMO MODEL

 

SLOCCount is a free tool created with the objective to analyze software projects, that
it is based in the COCOMO model, an algorithmic of Software Cost Estimation Model
developed by Barry Boehm. This tool counts the number of lines of code of the application
that needs to be evaluated, even if different languages compose it, doing an estimation of
cost, length and number of developers.

For the Data Collector Tool created, the results obtained from this method of
evaluation show us that for the development of the tool would be necessary almost 3 months
and a half of work from a developer, spending the 65 percent of the working hours on this
task, including the coding time and some additional time for researching additional
information.

Next, there are represented the complete results obtained using this method of
evaluation:

Computing results:

SLOC Directory SLOC-by-Language (Sorted)

526 Library1 cpp=438,ansic=88

397 Application1 cpp=397

0 top_dir (none)

Totals grouped by language (dominant language first):

cpp: 835 (90.47%)

ansic: 88 (9.53%)

Total Physical Source Lines of Code (SLOC) = 923

Development Effort Estimate, Person-Years (Person-Months) = 0.18 (2.21)

 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.28 (3.38)

 (Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 0.65

Total Estimated Cost to Develop = $ 24,837

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 92 

 (Average salary = $56,286/year, overhead = 2.40).

SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

SLOCCount is Open Source Software/Free Software, licensed under the GNU
GPL.

SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to
redistribute it under certain conditions as specified by the GNU GPL
license; see the documentation for details.

Please credit this data as "generated using David A. Wheeler's
'SLOCCount'."

 - What is COCOMO? -

COCOMO was first published in 1981, in the book Software engineering economics,
from Barry J. Boehm's, as a model for estimating effort, cost, and schedule for software
projects. For its development, it drew on a study of 63 projects at TRW Aerospace where
Barry Boehm was Director of Software Research and Technology that year. The study
examined projects ranging in size from 2000 to 100,000 lines of code, and programming
languages ranging from assembly to PL/I, a huge variety of them; after the study of all this
project, it carried out a statistic to estimate the variables that he was interested it: effort, cost
and schedule.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 93 

REFERENCES
 

[1] N. Eagle, “Machine Perception and Learning of Complex Social Systems”, Ph.D. Thesis,
Program in Media Arts and Sciences, Massachusetts Institute of Technology, June 2005.

[2] ACM SIGCHI (Association for Computing Machinery Special Interest Group on
Computer-Human Interaction) - Curricula for Human-Computer Interaction. Available
online at http://sigchi.org/cdg/cdg2.html#2_1 . Site last visited: April 2008.

[3] Kirakowski, J. and Corbett, M. SUMI, “The software usability measurements inventory.”
British Journal of Educational Technology 24, 3 (1993), 210-212.

[4] HCI: Human-Computer Interaction. Available online at http://recuperacioninformacion-
interfazhci.iespana.es/ . Site last visited: April 2008.

[5] Kjeldskov, J. and Paay, J.,“Indexical Interaction Design for Context-Aware Mobile
Computer Systems.” Proceedings of Workshop on Context in Mobile HCI, Mobile HCI
2005, Salzburg, Austria, ACM, pp. 23-30.

[6] Naur, P. Intuition in software development, in H. Ehring et al. “Formal Methods and
Software Development,” Vol. 2, Berlin, 1985. Also in Naur, P. “Computing: A Human
Activity.” ACM Press/Addison-Wesley, New York, 1992, 449-466.

[7] Rasmussen, J. “Skills, rules, and knowledge; signals, signs, and symbols, and other
distinctions in human performance models.” IEEE Transactions on Systems, Man, and
Cybernetics SMC-13, 3 (1983), 257-266.

[8] PDA Data Collection: A Quick Overview. Available online at
http://www.lokilogic.com/pda_data_collection.htm. Site last visited: May 2008.

[9] Molich,R.,Bevan,N.,Butler, S.,Curson, I.,Kindlund,E.,Kirakowski, J. and Miller, D.,
1998, “Comparative evaluation of usability tests.” Usability Professionals Association 1998
Conference, 22 – 26 June 1998.

[10] Molich, Rolf and Dumas, Joseph “Comparative usability evaluation (CUE-4)”,
Behaviour & Information Technology, 1 – 19. 2006.

[11] Johnson, P., “Usability and Mobility; Interactions on the move”. In Proceedings of the
First Workshop on Human-Computer Interaction with Mobile Devices, Glasgow, Scotland,
GIST Technical Report G98-1.

[12] Tamminen, S., Oulasvirta, A., Toiskallio, K., & Kankainen, A. “Understanding mobile
contexts.” Special Issue of Journal of Personal and Ubiquitous Computing. 8, 135-143.
2004.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 94 

[13] Kjeldskov, J., and Graham, C. “A Review of Mobile HCI Research methods.” In
Proceedings of the 5th International Mobile HCI 2003 Conference, Udine, Italy, Sringer-
Verlag. 2003.

[14] Indexical Interaction Design (IID). Available online at
http://www.cs.aau.dk/~jesper/iid/index.html. Site last visited: May 2008.

[15] Jesper Kjeldskov, Mikael B. Skov and Jan Stage, “Instant Data Analysis: Conducting
Usability Evaluations in a Day”, Department of Computer Science, Aalborg University.

[16] Affinity diagramming. Available online at
http://www.usabilitynet.org/tools/affinity.htm. Site last visited: March 2008.

[17] Think aloud protocol. Available online at
http://en.wikipedia.org/wiki/Think_aloud_protocol. Site last visited: February 2008.

[18] How to Conduct a Heuristic Evaluation. Available online at
http://www.useit.com/papers/heuristic/heuristic_evaluation.html. Site last visited: March
2008.

[19] Kjeldskov J., Skov M. B., Als B. S. and Høegh R. T. “Is it Worth the Hassle?”
Exploring the Added Value of Evaluating the Usability of Context-Aware Mobile Systems
in the Field . In Proceedings MobileHCI conference, Glasgow, UK. Springer- Verlag, 2004.
61-73.

[20] Roto, V. Oulasvirta, A. Haikarainen, T. Lehmuskallio, H. & Nyyssönen, T. “Examining
mobile phone use in the wild with quasi-experimentation.” HIIT Technical Report 2004-1,
August 13.

[21] Nielsen J. and Landauer T.K. “A Mathemetical Model of Finding Usability Problems.”
In proceedings of INTERCHI ’93. 206-213. 1993.

[22] Device details – Nokia N70. Available online at
http://www.forum.nokia.com/devices/N70. Site last visited: March 2008.

[23] S. Babin, “Developing Software for Symbian OS: An Introduction to Creating
Smartphone Applications in C++”, John Wiley and Sons, Ltd. 2006.

[24] J. Stichbury, “Symbian OS Explained: Effective C++ Programming for Smartphones”,
John Wiley and Sons, Ltd. 2006.

[25] LiMo Foundation. Available online at http://www.limofoundation.org. Site last visited:
April 2008.

[26] Wikipedia – The free encyclopedia. Available online at http://en.wikipedia.org. Site last
visited: June 2008.

                    PATRICIA GÓMEZ TEJEDOR | A NETWORKED USAGE DATA LOGGER FOR SYMBIAN PHONES 
HUMAN‐COMPUTER INTERACTION GROUP | PANEPISTIMIO PATRON 

 
 

 95 

[27] The Symbian Investor – Symbian History. Available online at
http://www.metalgrass.com/symbianinvestor/SymbHist.html. Site last visited: April 2008.

[28] All Nokia tools and Nokia SDKs for developers. Available online at
http://www.forum.nokia.com/. Site last visited: June 2008.

[29] Technology news – CNET News.com. Available online at http://news.cnet.com/. Site
last visited: June 2008.

[30] Android. Available online at http://code.google.com/android/. Site last visited: June
2008.

[31] Apple. Available online at http://www.apple.com/. Site last visited: May 2008.

[32] InformationWeek – Analysis: How Smartphone platforms compare. Available online at
http://www.informationweek.com/1122/ID_chart.jhtml. Site last visited: April 2008.

[33] Access Company. Available online at http://www.access-
company.com/products/garnet/. Site last visited: April 2008.

[34] HowStuffWorks “Smartphones operating systems”. Available online at
http://communication.howstuffworks.com/smartphone2.htm. Site last visited: April 2008.

[35] LiMo (Linux for Mobiles) is Ready to Go Prime Time - GigaOM. Available online at
http://gigaom.com/2007/11/05/limo-2/. Site last visited: May 2008.

[36] What’s S60. Available online at
http://www.s60.com/business/whatss60/softwareversions. Site last visited: June 2008.

[37] R. Esgueva, “A networked usage data logger for Pocket PC”, Final Thesis, Human-
Computer Interaction Department, Panepistimio Patron, May 2008.

[38] S. Hernandez, “Design and implementation of a matrix-code reader application suitable
for mobile devices”, Final Thesis, Human-Computer Interaction Department, Panepistimio
Patron, March 2007.

[39] A. Jakl, “Symbian OS: Quickstart and Carbide.c++ UI-Desing”. University of Applied
Sciences in Hagenberg, Austria, 2007.

[40] Hypertext Transfer Protocol - HTTP/1.1. Available online at: 
http://www.w3.org/Protocols/rfc2616/rfc2616.html. Site last visited June 2008. 

[40] K. Wiegers, Peer Reviews, “Software: A Practical Guide”. Addison-Wesley
Information Technology Series.

[41] S. McConnell, “Code Complete”. Microsoft Press.

